Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{10^4.81-16.15^2}{\left(-8\right)^4.3^{12}+6^{11}}=\frac{10^4.3^4-4^2.15^2}{8^4.3^{12}+6^{11}}=\frac{30^4-60^2}{2^{12}.3^{12}+6^{11}}=\frac{\left(30^2\right)^2-60^2}{6^{12}+6^{11}}\)
\(=\frac{900^2-60^2}{6^{11}.\left(6+1\right)}=\frac{60^2.\left(15^2-1\right)}{6^{11}.7}=\frac{60^2.224}{6^{11}.7}=\frac{2^9.3^2.5^2.7}{2^{11}.3^{11}.7}=\frac{5^2}{2^2.3^9}=\frac{25}{78732}\)
a) 227 = (23)9 = 89
318 = (32)9 = 99
Do: 8 < 9 nên 89 < 99 hay 227 < 318
b) 291 = (213)7 = 81927
535 = (55)7 = 31257
Do: 8192 > 3125 nên 291 > 535
c) 2225 = (23)75 = 875
3150 = (32)75 = 975
Do: 8 < 9 nên 2225 < 3150
d) 912 = (32)12 = 324
277 = (33)7 = 321
Do: 24 > 21 nên 912 > 277
So sánh: \(\left(-\dfrac{1}{6}\right)^{100}\) và \(\left(-\dfrac{1}{2}\right)^{500}\)
Ta có: \(\left(-\dfrac{1}{2}\right)^{500}=\left[\left(-\dfrac{1}{2}\right)^5\right]^{100}=\left(-\dfrac{1}{32}\right)^{100}=\left(\dfrac{1}{32}\right)^{100}\)
\(\left(-\dfrac{1}{6}\right)^{100}=\left(\dfrac{1}{6}\right)^{100}\)
Vì: \(\left(\dfrac{1}{32}\right)^{100}< \left(\dfrac{1}{6}\right)^{100}\Rightarrow\left(-\dfrac{1}{6}\right)^{100}>\left(-\dfrac{1}{2}\right)^{500}\)
\(\left(-\dfrac{1}{6}\right)^{100}\)
\(\left(-\dfrac{1}{2}\right)^{500}\)\(=\left(\left(-\dfrac{1}{2}\right)^5\right)^{100}=\left(\dfrac{-1}{2^5}\right)^{100}=\left(-\dfrac{1}{32}\right)^{100}\)
Vì \(-\dfrac{1}{6}< \left(-\dfrac{1}{32}\right)\)
=>\(\left(-\dfrac{1}{6}\right)^{100}< \left(-\dfrac{1}{32}\right)^{100}\)
Vậy \(\left(-\dfrac{1}{6}\right)^{100}< \left(-\dfrac{1}{2}\right)^{500}\)
#H ( ~~~~~~~Study well~~~~~~~~)
#) Trả lời :
\(\frac{5^{2009}.5^3}{5^{2010}}=\frac{5^{2012}}{5^{2010}}=5^2=25\)
#Hok_tốt
\(\dfrac{3^3\cdot6^{13}}{2^6\cdot18^7}=\dfrac{3^3\cdot3^{13}\cdot2^{13}}{2^6\cdot2^7\cdot\left(3^2\right)^7}=\dfrac{3^{16}\cdot2^{13}}{2^{13}\cdot3^{14}}=\dfrac{3^{16}}{3^{14}}=3^2=9\)
\(3^3\times\dfrac{6^{13}}{2^6\times18^7}\)
\(=\dfrac{3^2\times3^{13}\times2^{13}}{2^6\times3^7\times3^7\times2^7}\)
\(=\dfrac{3^{15}\times2^{13}}{2^{13}\times3^{14}}\)
\(=3\)