Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề câu E sửa lại 95 hoặc 93 vì đây là dãy số mũ lẻ. Ta có :
\(E=3+3^3+3^5+3^7+...+3^{95}\)
\(\Rightarrow\) \(9E=3^3+3^5+3^7+3^9+...+3^{95}+3^{97}\)
\(\Rightarrow\) \(8E=3^{97}-3\)
\(\Rightarrow\) \(E=\frac{3^{97}-3}{8}\)
\(E=3+3^3+3^5+3^7+.......+3^{95}\)
\(\Rightarrow9E=3^3+3^5+3^7+3^9+...+3^{97}\)
\(\Rightarrow9E-E=\left(3^3+3^5+3^7+3^9+....+3^{97}\right)-\left(3+3^3+3^5+3^7+.....+3^{95}\right)\)
\(\Rightarrow8E=3^{97}-3\)
\(\Rightarrow E=\frac{3^{97}-3}{8}\)
\(F=1+2018+2018^2+......+2018^{2017}\)
\(=2018^0+2018^1+2018^2+....+2018^{2017}\)
\(\Rightarrow2018F=2018^1+2018^2+2018^3+....+2018^{2018}\)
\(\Rightarrow2018F-F=\left(2018^1+2018^2+2018^3+....+2018^{2018}\right)-\left(2018^0+2018^1+2018^2+....+2018^{2017}\right)\)
\(\Rightarrow2017F=2018^{2018}-1\)
\(\Rightarrow F=\frac{2018^{2018}-1}{2017}\)
Ta có:
\(\left(x-2018\right)^3=\left(x-2018\right)^2\)
\(\Rightarrow\left(x-2018\right)^2.\left(x-2018\right)=\left(x-2018\right)^2\)
\(\Rightarrow x-2018=1\)
\(\Rightarrow x=2019\)
\(\left(x-2018\right)^3=\left(x-2018\right)^2\)
\(\Rightarrow\left(x-2018\right)^3-\left(x-2018\right)^2=0\)
\(\Rightarrow\left(x-2018\right)^2\left[\left(x-2018\right)-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}x-2018=0\\x-2018=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2018\\x=2019\end{cases}}\)
\(5^6:5^4+2^3+2^2-1^{2018}\)
\(=5^2+8+4-1\)
\(=25+11\)
\(=36\)
56 : 54 + 23 + 22 - 12018
= 52 + 23 + 22 - 12018
= 25 + 8 + 4 - 1
= 36
Học tốt nhé bạn !
Có A = 1/2 + 1/2^2 + 1/2^3 + ......+1/2^2018
Nên 2A = 1 + 1/2 + 1/2^2 + ......+1/2^2017
Suy ra 2A - A = (1+ 1/2 + 1/2^2 +.........+1/2^2017) - (1/2 + 1/2^2 + 1/2^3 + ......+ 1/2^2^2008)
A = 1 - 1/2^2008
Nên 2^2008*A + 1 = 2^2008 * (1 - 1/2^2008) + 1
=2^2008 - 1 +1
=2^2008
Vậy, 2^2008*A+1 là 1 lũy thừa với cơ số tự nhiên
S = 1-3 + 32 - 33 + ..+ 32018 - 32019
=> 3S = 3 - 32 + 33 - 34 +...+ 32019 - 32020
=> 3S + S = 1 - 32020
4S = 1 - 32020
\(S=\frac{1-3^{2020}}{4}\)
Ta có :
20173 + 20172 = 20172 . 2017 + 20172 . 1 = 20172 . ( 2017 + 1 ) = 20172 . 2018 < 20182 . 2018 = 20183
Vậy 20173 + 20172 < 20183
32 + 25.4 - 2018 = 9 + 100 - 2018
= 109 - 2018
= - 1909
32 + 25 . 4 - 2018
= 9 + 100 - 2018
= 109 - 2018
= -1909