K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

a: Xét tứ giác AKMH có 

\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)

Do đó: AKMH là hình chữ nhật

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

16 tháng 12 2023

a: Xét tứ giác AHMK có

\(\widehat{AHM}=\widehat{AKM}=\widehat{HAK}=90^0\)

=>AHMK là hình chữ nhật

=>AM=HK

b: Xét ΔABC có

M là trung điểm của BC

MK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MH//AC

Do đó: H là trung điểm của AB

Xét ΔABC có

M,K lần lượt là trung điểm của CB,CA

=>MK là đường trung bình của ΔABC

=>MK//AB và \(MK=\dfrac{AB}{2}\)

Ta có: MK//AB

H\(\in\)AB

Do đó: MK//HB

Ta có: \(MK=\dfrac{AB}{2}\)

\(AH=HB=\dfrac{AB}{2}\)

Do đó: MK=AH=HB

Xét tứ giác BHKM có

BH//KM

BH=KM

Do đó: BHKM là hình bình hành

c: Gọi O là giao điểm của AM và KH

Ta có: AHMK là hình chữ nhật

=>AM cắt KH tại trung điểm của mỗi đường

=>O là trung điểm của AM và KH

=>\(OA=OM=\dfrac{AM}{2};OK=OH=\dfrac{KH}{2}\)

mà AM=KH

nên OA=OM=OK=OH(1)

Xét ΔAKM có

AF,KO là các đường trung tuyến

AF cắt KO tại D

Do đó: D là trọng tâm của ΔAKM

Xét ΔAKM có

D là trọng tâm

KO là đường trung tuyến

Do đó: \(KD=\dfrac{2}{3}KO\left(2\right)\)

Xét ΔHAM có

AE,HO là các đường trung tuyến

AE cắt HO tại I

Do đó: I là trọng tâm của ΔHAM

Xét ΔHAM có

HO là đường trung tuyến

I là trọng tâm

Do đó: \(HI=\dfrac{2}{3}HO\left(3\right)\)

Từ (1),(2),(3) suy ra HI=KD

loading...

10 tháng 7 2018

a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)

Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).

b) Áp dụng tính chất đối xứng trục ta có:

A H = A M , A 1 ^ = A 2 ^  và A K = A M , A 3 ^ = A 4 ^ .

Mà A 2 ^ + A 3 ^  = 900 Þ H, A, K thẳng hàng.

Lại có AH = AM = AK Þ H đối xứng với K qua A.

c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^  mà AM là đường trung tuyến.

Þ DABC vuông cân tại A.