Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a/b = a - 1. vì a+ b= ab
( ab-a) - 1= 0
a(b-1)= 1
vì ab = a/b => a= 0 và b = 1/b => b=0 ( vô lý)
=> b= -1 hoặc 1
+) Nếu b= 1 => a+1 = a ( vô lý)
+) Nếu b= -1 => a-1 = -a ( điều phải chứng minh)
3) => 2a = 1 => a= 1/2
2) khi đó : a/b = 1/2 : (-1) = -1/2
a-1 = 1/2 -1 = -1/2
=> a/b = a-1 ( đpcm)
vậy a/b = a - 1; b= -1; a= 1/2
CRE: L.Uyen Nhi
\(a+b=ab=\dfrac{a}{b}\)
Ta có:
\(ab=\dfrac{a}{b}\Rightarrow ab=\dfrac{a^2}{ab}\)
\(\Rightarrow a^2b^2=a^2\)
\(\Rightarrow b^2=1\Rightarrow b=\pm1\)
Xét:
\(b=1\Rightarrow a+b=ab=\dfrac{a}{b}\Rightarrow a+1=a=a\left(KTM\right)\)
Xét:
\(b=-1\Rightarrow a+b=ab=\dfrac{a}{b}\Rightarrow a-1=-a=-a\)
\(\Rightarrow a-1=-a\)
\(\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)
Ta có:
\(\dfrac{a}{b}=a-1\rightarrowđpcm\)
\(b=-1\rightarrowđpcm\)
\(a=\dfrac{1}{2}\)
\(\left|a+b\right|=\left|a-b\right|\)
\(\Rightarrow\orbr{\begin{cases}a+b=a-b\\a+b=-\left(a-b\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}a-a=-b-b\\a+b=-a+b\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}0=-2b\\a+a=b-b\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}b=0\\2a=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}b=0\\a=0\end{cases}}\)
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
nhi tham khảo bài giải này nhé
1) a/b = a - 1. vì a+ b= ab
( ab-a) - 1= 0
a(b-1)= 1
vì ab = a/b => a= 0 và b = 1/b => b=0 ( vô lý)
=> b= -1 hoặc 1
+) Nếu b= 1 => a+1 = a ( vô lý)
+) Nếu b= -1 => a-1 = -a ( điều phải chứng minh)
2) => 2a = 1 => a= 1/2
3) khi đó : a/b = 1/2 : (-1) = -1/2
a-1 = 1/2 -1 = -1/2
=> a/b = a-1 ( đpcm)
vậy a/b = a - 1; b= -1; a= 1/2
CRE: L.Uyen Nhi