Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3}{\sqrt{x}-3}\)
Lời giải:
ĐKXĐ:......
a) Ta có:
\(\frac{3+\sqrt{x}}{3-\sqrt{x}}-\frac{3-\sqrt{x}}{3+\sqrt{x}}-\frac{4x}{x-9}=\frac{(3+\sqrt{x})^2-(3-\sqrt{x})^2}{(3-\sqrt{x})(3+\sqrt{x})}-\frac{4x}{x-9}\)
\(=\frac{9+x+6\sqrt{x}-(9+x-6\sqrt{x})}{9-x}-\frac{4x}{x-9}=\frac{-12\sqrt{x}}{x-9}-\frac{4x}{x-9}=\frac{-4\sqrt{x}(3+\sqrt{x})}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{4\sqrt{x}}{3-\sqrt{x}}\)
Và:
\(\frac{5}{3-\sqrt{x}}-\frac{4\sqrt{x}+2}{3\sqrt{x}-x}=\frac{5\sqrt{x}}{3\sqrt{x}-x}-\frac{4\sqrt{x}+2}{3\sqrt{x}-x}=\frac{\sqrt{x}-2}{\sqrt{x}(3-\sqrt{x})}\)
Do đó:
\(C=\frac{4\sqrt{x}}{3-\sqrt{x}}: \frac{\sqrt{x}-2}{\sqrt{x}(3-\sqrt{x})}=\frac{4\sqrt{x}}{3-\sqrt{x}}.\frac{\sqrt{x}(3-\sqrt{x})}{\sqrt{x}-2}=\frac{4x}{\sqrt{x}-2}\)
b)
Nếu $C\leq 0$ thì \(|C|=-C\) (không thỏa mãn)
Nếu $C>0$ thì \(|C|=C>0>-C\) (thỏa mãn)
Vậy để \(|C|> -C\) thì \(C>0\Leftrightarrow \frac{4x}{\sqrt{x}-2}>0\Leftrightarrow \sqrt{x}-2>0\) (do \(x>0)\)
\(\Leftrightarrow x> 4\)
Kết hợp đkxđ suy ra điều kiện của $x$ là \(x>4; x\neq 9\)
c)
\(C^2=40C\Leftrightarrow C(C-40)=0\Leftrightarrow \left[\begin{matrix} C=0\\ C=40\end{matrix}\right.\)
Nếu $C=0$ thì \(\frac{4x}{\sqrt{x}-2}=0\Rightarrow x=0\) (không t/m ĐKXĐ)
Nếu \(C=40\Leftrightarrow \frac{4x}{\sqrt{x}-2}=40\Leftrightarrow x=10(\sqrt{x}-2)\)
\(\Rightarrow \sqrt{x}=5\pm \sqrt{5}\Rightarrow x=(5\pm \sqrt{5})^2\)
Na: cái này là giải pt bậc 2 đơn giản thôi bạn:
\(x=10(\sqrt{x}-2)\)
\(\Rightarrow x-10\sqrt{x}+20=0\)
\(\Rightarrow (\sqrt{x}-5)^2-5=0\Rightarrow (\sqrt{x}-5)^2=5\)
\(\Rightarrow \sqrt{x}-5=\pm \sqrt{5}\Rightarrow \sqrt{x}=5\pm \sqrt{5}\) đó bạn.
điều kiện xác định : \(x>0;x\ne9\)
a) ta có : \(C=\left(\dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}-\dfrac{4x}{x-9}\right):\left(\dfrac{5}{3-\sqrt{x}}-\dfrac{4\sqrt{x}+2}{3\sqrt{x}-x}\right)\)
\(\Leftrightarrow C=\left(\dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}+\dfrac{4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\dfrac{5}{3-\sqrt{x}}-\dfrac{4\sqrt{x}+2}{\sqrt{x}\left(3-\sqrt{x}\right)}\right)\) \(\Leftrightarrow C=\left(\dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}+\dfrac{4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\dfrac{5\sqrt{x}-4\sqrt{x}-2}{\sqrt{x}\left(3-\sqrt{x}\right)}\right)\) \(\Leftrightarrow C=\left(\dfrac{\left(3+\sqrt{x}\right)^2-\left(3-\sqrt{x}\right)^2+4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-2}{\sqrt{x}\left(3-\sqrt{x}\right)}\right)\) \(\Leftrightarrow C=\left(\dfrac{12\sqrt{x}+4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right)\left(\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\right)\) \(\Leftrightarrow C=\left(\dfrac{4\sqrt{x}\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right)\left(\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\right)=\dfrac{4x}{\sqrt{x}-2}\)b) để \(\left|C\right|>-C\) \(\Leftrightarrow C< 0\) \(\Leftrightarrow\dfrac{4x}{\sqrt{x}-2}< 0\) \(\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)
c) để \(C^2=40C\Leftrightarrow C^2-40C=0\Leftrightarrow C\left(C-40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}C=0\\C=40\end{matrix}\right.\)
+) \(C=0\Leftrightarrow\dfrac{4x}{\sqrt{x}-2}=0\) \(\Leftrightarrow x=0\left(loại\right)\)
+) \(C=40\Leftrightarrow\dfrac{4x}{\sqrt{x}-2}=40\Leftrightarrow x=10\sqrt{x}-20\)
\(\Leftrightarrow x-10\sqrt{x}+20=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=5+3\sqrt{5}\left(N\right)\\\sqrt{x}=5-3\sqrt{5}\left(L\right)\end{matrix}\right.\)
ta có : \(\sqrt{x}=5+3\sqrt{5}\Leftrightarrow x=70+30\sqrt{5}\)
vậy ..............................................................................................................................
\(A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{2x-6\sqrt{x}+x+\sqrt{x+}3\sqrt{x}+3+3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{3x-13\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(Q=x+1\)
Không thể tìm được GTLN hay GTNN của Q.
b)
\(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)
Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)
Vậy x=1, x=9 là các giá trị cần tìm
a) Ta có:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)
b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)
.....Chưa nghĩ ra....
c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)
Vậy Min P = 0 khi x =9.
k - kb với tớ nhia mn!
a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)
b) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=-\frac{3}{2\left(\sqrt{x}-3\right)}\)c) Để P nguyên thì \(2\left(\sqrt{x}-3\right)\in\left\{-3;-1;1;3\right\}\)=> x thuộc rỗng.
bạn đặt \(\sqrt{x}=a\) , a> 0
Thay \(\sqrt{x}=a\) vô biểu thức => rút gọn ra => thay trở lại
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
b: Để P<-1/2thì P+1/2<0
\(\Leftrightarrow-6+\sqrt{x}+3< 0\)
=>0<x<9
c: Để P là số nguyên thì \(\sqrt{x}+3\inƯ\left(-3\right)\)
=>căn x+3=3
=>x=0
a, ĐK: \(x\ge0;x\ne9\)
\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=-\dfrac{3}{\sqrt{x}-3}\)
b, \(P>0\Leftrightarrow-\dfrac{3}{\sqrt{x}-3}>0\)
\(\Leftrightarrow\sqrt{x}-3>0\)
\(\Leftrightarrow x>9\)
c, \(P=-\dfrac{3}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\sqrt{x}-3\inƯ_3=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2;4;6\right\}\)
\(\Leftrightarrow x\in\left\{0;4;16;36\right\}\)