\(⋮\)5
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

Ta có:

 9999931999 =  9999931996  . 9999933 = (9999934)499 . 9999933 = (.....1)499 . (.....7 )

\(\Rightarrow\) 9999931999 có tận cùng là 7

5555571997 =  555557 . 5555571996 =  555557 . ( 5555574 )499 = 555557 . ( ....1)499

=> 5555571997 có tận cùng là 7

A = 9999931999 - 5555571997 

A = ( .....7 ) - ( .....7 )

A= ( .....0)

=> A có tận cùng là 0

=>  \(A⋮5\)

Bài 3 :

Cách 1 :

Ta có:

A = 99999311999- 5555571997 

   = 9999931998 .999993 - 5555571996 . 555557

= (9999932)999 .999993 - (5555572 ) 998 . 555557

=(...9)999 .999993 - (...9)998 .555557

= (...9). 999993 - (...1).555557

=(...7)-(...7) =(...0)

Chữ số tận cùng của A= 9999931999 -5555531997 là 0.

=> A= 9999931999 -5555531997 chia hết cho 5. =>đpcm.

16 tháng 2 2020

\(999993^{1999}-555557^{1997}=\left(999993^4\right)^{499}.999993^3-\left(555557^4\right)^{499}.555557\)

\(=\left(....1\right)^{499}.999993-\left(.....1\right)^{499}.555557=\left(....3\right)-\left(.....7\right)=\left(.....6\right)\)

16 tháng 2 2020

\(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+....+\frac{1}{80}\right)\)

\(< \left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\left(20\text{ số hạng}\right)\right)+\left(\frac{1}{60}+\frac{1}{60}+....+\frac{1}{60}\left(20\text{ số hạng}\right)\right)=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

4,Tìm a, b N, biết:

a,10a+168=b2

b,100a+63=b2

c,2a+124=5b

d,2a+80=3b

 Giải:

a) xét \(a=0\)

\(\Rightarrow10^a+168=1+168=169=13^2\)

\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)

xét \(a\ne0\)

=>10a có tận cùng bằng 0

Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9  )

=>không có b

vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)

b)Chứng minh tương tự câu a)

c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5

\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5

Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0

ta có :

2^0 + 124 = 5^b

=> 125 = 5^b

=> 5^3 = 5^b

=> b = 3

Vậy a = 0 ; b =3

d)Chứng minh tương tự như 2 câu mẫu trên

3,Cho B=34n+3+2013

Chứng minh rằng B10 với mọi nN

Giải:

Ta có : 

34n+3+2013

=(34)n+27+2013

=81n+2040

Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc

20 tháng 5 2016

Tôi giải hơi dài 1 tí ,  hãy cố gắng đọc:

a) 571999 ta xét 71999
Ta có: 71999 = (74)499.73 = 2041499. 343 Suy ra chữ số tận cùng bằng 3
‏Vậy số 571999 có chữ số tận cùng là : 3
b) 931999 ta xét 31999
Ta có: 31999 = (34)499. 33 = 81499.27
Suy ra chữ số tận cùng bằng 7
2. Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Theo câu 1b ta có: 9999931999 có chữ số tận cùng là 7
Tương tự câu 1a ta có: (74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.

20 tháng 5 2016

a) 571999 ta xét 71999
Ta có: 71999 = (74)499.73 = 2041499. 343 Suy ra chữ số tận cùng bằng 3
‏Vậy số 571999 có chữ số tận cùng là : 3
b) 931999 ta xét 31999
Ta có: 31999 = (34)499. 33 = 81499.27
Suy ra chữ số tận cùng bằng 7
2. Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Theo câu 1b ta có: 9999931999 có chữ số tận cùng là 7
Tương tự câu 1a ta có: (74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.

3 tháng 6 2016

Bài 1:

a) 571999 = 571996 . 573 = 57499.4 . ( ....3) = (...1) . (....3) = (....3)

Vậy 571999 có chữ số tận cùng là 3

b) 931999 = 931996 . 933 = 93499.4 . (...7) = (....1) . (...7) = (...7)

Vậy 931999 có chữ số tận cùng là 7

Bài 2 

A = 9999931999 - 5555571997 chia hết cho 5

=> A = ( 9999931996 . 9999933 ) - ( 5555571996 . 555557 ) chia hết cho 5

=> A =  [ 999993499.4 . (....7) ] - [ 555557499.4 . (....7) chia hết cho 5

=>  A = [ (....1 ) .(...7) ] - [ (...1) . (...7) ] chia hết cho 5

=>  A  = (...7) - (...7) chia hết cho 5

=> A   =  (...0) chia hết cho 5 (đpcm)

Ai k mik mik k lại

vggysqfyge32wfbhu334xft799nbr45445fk0pnr5gtrgđsyhmjlkmk;kmffed

23 tháng 2 2020

vovyfsboiviuqgufgbfvoeu

1 tháng 2 2017

9999931999 - 5555571997 

= ( 9999932)999.999993 - ( 5555572)998.555557

.......9999.999993 - ........9998.555557

.........9.999993 - .........1.555557

.......7 - ........7 = .......0 chia hết cho 5

=> 9999931999 - 5555571997 chia hết cho 5 ( đpcm )

1 tháng 2 2017

do 5 thuộc ước của A nên A chia hết cho 5

2 tháng 1 2019

5, 

Ta có :n2 + n + 6 = n(n + 1 ) + 6

Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp

=> n(n+1) không có c/s tận cùng là 9 và 4

=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )

Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N

2 tháng 1 2019

6, 

Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12

Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3

Số có tận cùng là 387 thì chia cho 8 sẽ dư 3

=> các số có tận cùng là 387