Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(999993^{1999}-555557^{1997}=\left(999993^4\right)^{499}.999993^3-\left(555557^4\right)^{499}.555557\)
\(=\left(....1\right)^{499}.999993-\left(.....1\right)^{499}.555557=\left(....3\right)-\left(.....7\right)=\left(.....6\right)\)
\(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+....+\frac{1}{80}\right)\)
\(< \left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\left(20\text{ số hạng}\right)\right)+\left(\frac{1}{60}+\frac{1}{60}+....+\frac{1}{60}\left(20\text{ số hạng}\right)\right)=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
4,Tìm a, b ∈N, biết:
a,10a+168=b2
b,100a+63=b2
c,2a+124=5b
d,2a+80=3b
Giải:
a) xét \(a=0\)
\(\Rightarrow10^a+168=1+168=169=13^2\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)
xét \(a\ne0\)
=>10a có tận cùng bằng 0
Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9 )
=>không có b
vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)
b)Chứng minh tương tự câu a)
c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5
\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5
Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0
ta có :
2^0 + 124 = 5^b
=> 125 = 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b =3
d)Chứng minh tương tự như 2 câu mẫu trên
3,Cho B=34n+3+2013
Chứng minh rằng B⋮10 với mọi n∈N
Giải:
Ta có :
34n+3+2013
=(34)n+27+2013
=81n+2040
Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc
Tôi giải hơi dài 1 tí , hãy cố gắng đọc:
a) 571999 ta xét 71999
Ta có: 71999 = (74)499.73 = 2041499. 343 Suy ra chữ số tận cùng bằng 3
Vậy số 571999 có chữ số tận cùng là : 3
b) 931999 ta xét 31999
Ta có: 31999 = (34)499. 33 = 81499.27
Suy ra chữ số tận cùng bằng 7
2. Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Theo câu 1b ta có: 9999931999 có chữ số tận cùng là 7
Tương tự câu 1a ta có: (74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
a) 571999 ta xét 71999
Ta có: 71999 = (74)499.73 = 2041499. 343 Suy ra chữ số tận cùng bằng 3
Vậy số 571999 có chữ số tận cùng là : 3
b) 931999 ta xét 31999
Ta có: 31999 = (34)499. 33 = 81499.27
Suy ra chữ số tận cùng bằng 7
2. Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Theo câu 1b ta có: 9999931999 có chữ số tận cùng là 7
Tương tự câu 1a ta có: (74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
Bài 1:
a) 571999 = 571996 . 573 = 57499.4 . ( ....3) = (...1) . (....3) = (....3)
Vậy 571999 có chữ số tận cùng là 3
b) 931999 = 931996 . 933 = 93499.4 . (...7) = (....1) . (...7) = (...7)
Vậy 931999 có chữ số tận cùng là 7
Bài 2
A = 9999931999 - 5555571997 chia hết cho 5
=> A = ( 9999931996 . 9999933 ) - ( 5555571996 . 555557 ) chia hết cho 5
=> A = [ 999993499.4 . (....7) ] - [ 555557499.4 . (....7) chia hết cho 5
=> A = [ (....1 ) .(...7) ] - [ (...1) . (...7) ] chia hết cho 5
=> A = (...7) - (...7) chia hết cho 5
=> A = (...0) chia hết cho 5 (đpcm)
Ai k mik mik k lại
vggysqfyge32wfbhu334xft799nbr45445fk0pnr5gtrgđsyhmjlkmk;kmffed
9999931999 - 5555571997
= ( 9999932)999.999993 - ( 5555572)998.555557
= .......9999.999993 - ........9998.555557
= .........9.999993 - .........1.555557
= .......7 - ........7 = .......0 chia hết cho 5
=> 9999931999 - 5555571997 chia hết cho 5 ( đpcm )
5,
Ta có :n2 + n + 6 = n(n + 1 ) + 6
Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp
=> n(n+1) không có c/s tận cùng là 9 và 4
=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )
Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N
6,
Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12
Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3
Số có tận cùng là 387 thì chia cho 8 sẽ dư 3
=> các số có tận cùng là 387
Ta có:
9999931999 = 9999931996 . 9999933 = (9999934)499 . 9999933 = (.....1)499 . (.....7 )
\(\Rightarrow\) 9999931999 có tận cùng là 7
5555571997 = 555557 . 5555571996 = 555557 . ( 5555574 )499 = 555557 . ( ....1)499
=> 5555571997 có tận cùng là 7
A = 9999931999 - 5555571997
A = ( .....7 ) - ( .....7 )
A= ( .....0)
=> A có tận cùng là 0
=> \(A⋮5\)
Bài 3 :
Cách 1 :
Ta có:
A = 99999311999- 5555571997
= 9999931998 .999993 - 5555571996 . 555557
= (9999932)999 .999993 - (5555572 ) 998 . 555557
=(...9)999 .999993 - (...9)998 .555557
= (...9). 999993 - (...1).555557
=(...7)-(...7) =(...0)
Chữ số tận cùng của A= 9999931999 -5555531997 là 0.
=> A= 9999931999 -5555531997 chia hết cho 5. =>đpcm.