Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(x+\dfrac{5}{6}=\dfrac{3}{8}\)
=>\(x=\dfrac{3}{8}-\dfrac{5}{6}\)
=>\(x=\dfrac{9}{24}-\dfrac{20}{24}=-\dfrac{11}{24}\)
c: \(\dfrac{2}{3}x-\dfrac{1}{2}=\dfrac{5}{6}\)
=>\(\dfrac{2}{3}x=\dfrac{5}{6}+\dfrac{1}{2}=\dfrac{8}{6}=\dfrac{4}{3}\)
=>2x=4
=>x=4/2=2
d: \(\dfrac{x}{7}=\dfrac{6}{-21}\)
=>\(\dfrac{x}{7}=\dfrac{-2}{7}\)
=>x=-2
e: \(\left(\dfrac{7}{3}x-0,6\right):\dfrac{3^2}{5}=1\)
=>\(\dfrac{7}{3}x-0,6=\dfrac{3^2}{5}=1,8\)
=>\(\dfrac{7}{3}x=2,4\)
=>\(x=2,4:\dfrac{7}{3}=2.4\cdot\dfrac{3}{7}=\dfrac{7.2}{7}=\dfrac{36}{35}\)
f: \(\dfrac{x}{45}=\dfrac{5}{6}+\dfrac{-29}{30}\)
=>\(\dfrac{x}{45}=\dfrac{25}{30}-\dfrac{29}{30}=-\dfrac{4}{30}=-\dfrac{2}{15}\)
=>\(x=-\dfrac{2}{15}\cdot45=-6\)
g: \(\left(4,5-2x\right)\cdot\left(-\dfrac{1^4}{7}\right)=\dfrac{11}{14}\)
=>\(4,5-2x=\dfrac{11}{14}:\dfrac{-1}{7}=\dfrac{-11}{2}\)
=>\(2x=4,5+\dfrac{11}{2}=\dfrac{20}{2}=10\)
=>x=10/2=5
h: \(-\dfrac{2}{7}+\dfrac{4}{7}x=\dfrac{5}{7}\)
=>\(\dfrac{4}{7}x=\dfrac{5}{7}+\dfrac{2}{7}=\dfrac{7}{7}\)
=>4x=7
=>\(x=\dfrac{7}{4}\)
1: Ta có: 7x+6(3-x)=27-20+73
\(\Leftrightarrow7x+18-6x=80\)
\(\Leftrightarrow x=80-18=62\)
Vậy: x=62
2: Ta có: \(6x-5\left(x-7\right)=\left(27-514\right)-486-73\)
\(\Leftrightarrow6x-5x+35=27-514-486-73\)
\(\Leftrightarrow x+35=-1046\)
\(\Leftrightarrow x=-1081\)
Vậy: x=-1081
a) Ta có: \(\dfrac{1}{7}+x=-\dfrac{2}{3}\)
\(\Leftrightarrow x=-\dfrac{2}{3}-\dfrac{1}{7}=\dfrac{-14}{21}-\dfrac{3}{21}\)
hay \(x=-\dfrac{17}{21}\)
Vậy: \(x=-\dfrac{17}{21}\)
b) Ta có: \(\dfrac{-2}{3}:x=\dfrac{-5}{6}\)
\(\Leftrightarrow x=\dfrac{-2}{3}:\dfrac{-5}{6}=\dfrac{-2}{3}\cdot\dfrac{6}{-5}=\dfrac{-12}{-15}=\dfrac{4}{5}\)
Vậy: \(x=\dfrac{4}{5}\)
c) Ta có: \(\left(\dfrac{3}{5}-2x\right)\cdot\dfrac{5}{8}=1\)
\(\Leftrightarrow\left(\dfrac{3}{5}-2x\right)=1:\dfrac{5}{8}=\dfrac{8}{5}\)
\(\Leftrightarrow-2x=\dfrac{8}{5}-\dfrac{3}{5}=1\)
hay \(x=-\dfrac{1}{2}\)
Vậy: \(x=-\dfrac{1}{2}\)
d) Ta có: \(\dfrac{3}{4}+\dfrac{2}{5}x=\dfrac{29}{60}\)
\(\Leftrightarrow x\cdot\dfrac{2}{5}=\dfrac{29}{60}-\dfrac{3}{4}=\dfrac{29}{60}-\dfrac{45}{60}=\dfrac{-16}{60}=\dfrac{-4}{15}\)
hay \(x=\dfrac{-4}{15}:\dfrac{2}{5}=\dfrac{-4}{15}\cdot\dfrac{5}{2}=\dfrac{-20}{30}=-\dfrac{2}{3}\)
Vậy: \(x=-\dfrac{2}{3}\)
e) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)
hay \(x=-\dfrac{1}{4}:\dfrac{7}{20}=\dfrac{-1}{4}\cdot\dfrac{20}{7}=\dfrac{-20}{28}=\dfrac{-5}{7}\)
Vậy: \(x=-\dfrac{5}{7}\)
f) Ta có: \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Leftrightarrow-x+\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}=0\)
\(\Leftrightarrow-x+\dfrac{55}{60}-\dfrac{24}{60}-\dfrac{40}{60}=0\)
\(\Leftrightarrow-x-\dfrac{9}{60}=0\)
\(\Leftrightarrow-x=\dfrac{9}{60}=\dfrac{3}{20}\)
hay \(x=-\dfrac{3}{20}\)
Vậy: \(x=-\dfrac{3}{20}\)
g) Ta có: \(\left|x+\dfrac{1}{3}\right|-4=\dfrac{-1}{2}\)
\(\Leftrightarrow\left|x+\dfrac{1}{3}\right|=\dfrac{-1}{2}+4=\dfrac{-1}{2}+\dfrac{8}{2}=\dfrac{7}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{7}{2}\\x+\dfrac{1}{3}=-\dfrac{7}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}-\dfrac{1}{3}=\dfrac{21}{6}-\dfrac{2}{6}=\dfrac{19}{6}\\x=-\dfrac{7}{2}-\dfrac{1}{3}=\dfrac{-21}{6}-\dfrac{2}{6}=\dfrac{-23}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{19}{6};-\dfrac{23}{6}\right\}\)
`@` `\text {Ans}`
`\downarrow`
`a)`
\(2^{n+3}\cdot5^{n+3}=20^9\div2^9\)
`=>`\(\left(2\cdot5\right)^{n+3}=\left(20\div2\right)^9\)
`=>`\(10^{n+3}=10^9\)
`=>`\(n+3=9\)
`=> n = 9 - 3`
`=> n= 6`
Vậy, `n=6`
`b)`
\(3^{n+5}-3^{n+4}=1458\)
`=> 3^n*3^5 - 3^n*3^4 = 1458`
`=> 3^n*(3^5 - 3^4) = 1458`
`=> 3^n*162 = 1458`
`=> 3^n = 1458 \div 162`
`=> 3^n = 9`
`=> 3^n = 3^2`
`=> n=2`
Vậy, `n=2.`
`c)`
\(5^{n+3}+5^{n+2}=3750\)
`=> 5^n*5^3 + 5^n*5^2 = 3750`
`=> 5^n*(5^3+5^2) = 3750`
`=> 5^n*150 = 3750`
`=> 5^n = 3750 \div 150`
`=> 5^n =25`
`=> 5^n = 5^2`
`=> n=2`
Vậy, `n=2.`
`d)`
\(\dfrac{2}{7}x+\dfrac{3}{14}x=\dfrac{1}{2}\)
`=> 1/2x = 1/2`
`=> x = 1/2 \div 1/2`
`=> x=1`
Vậy, `x=1`
`e)`
\(\dfrac{x+2}{-3}=\dfrac{-2}{x+3}\)
`=> (x+2)(x+3) = -3*(-2)`
`=> (x+2)(x+3) = -6`
`=> x(x+3) + 2(x+3) = -6`
`=> x^2 + 3x + 2x + 6 = -6`
`=> x^2 + 5x + 6 - 6 = 0`
`=> x^2 + 5x = 0`
`=> x(x+5) = 0`
`=>`\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy, `x \in {0; -5}`
`@` `\text {Kaizuu lv u}`
a) \(x=\dfrac{1}{4}+\dfrac{2}{13}\)
\(x=\dfrac{13}{52}+\dfrac{8}{52}\)
⇒ \(x=\dfrac{21}{52}\)
b) \(\dfrac{x}{3}=\dfrac{2}{3}+\dfrac{-1}{7}\)
\(\dfrac{x}{3}=\dfrac{14}{21}+\dfrac{-3}{21}\)
\(\dfrac{x}{3}=\dfrac{11}{21}\)
⇒ \(x=\dfrac{11.3}{21}=\dfrac{33}{21}\)
⇒ \(x=\dfrac{11}{7}\)
c) \(\dfrac{-8}{3}+\dfrac{1}{3}< x< \dfrac{-2}{7}+\dfrac{-5}{7}\)
\(\dfrac{-17}{7}< x< -1\)
⇒ \(-17< x< -7\)
⇒ \(x\in\left\{-16;-15,....;-6\right\}\)
d) \(\dfrac{1}{6}+\dfrac{2}{5}\)
\(=\dfrac{5}{30}+\dfrac{12}{30}\)
\(=\dfrac{17}{30}\)
e) \(\dfrac{3}{5}+\dfrac{-7}{4}\)
\(=\dfrac{12}{20}+\dfrac{-35}{20}\)
\(=\dfrac{-23}{20}\)
f) \(\dfrac{4}{13}+\dfrac{-12}{30}\)
\(=\dfrac{4}{13}+\dfrac{-2}{5}\)
\(=\dfrac{20}{65}+\dfrac{-26}{65}\)
\(=\dfrac{-6}{65}\)
g) \(\dfrac{-3}{29}+\dfrac{16}{58}\)
\(=\dfrac{-6}{58}+\dfrac{16}{58}\)
\(=\dfrac{10}{58}\)
h) \(\dfrac{8}{40}+\dfrac{-36}{45}\)
\(=\dfrac{1}{5}+\dfrac{-4}{5}\)
\(=\dfrac{-3}{5}\)
j) \(\dfrac{-8}{18}+\dfrac{15}{27}\)
\(=\dfrac{-2}{9}+\dfrac{5}{9}\)
\(=\dfrac{3}{9}\)
\(=\dfrac{1}{3}\)
a) \(3.\left(2x+4\right)+2.\left(3x-3\right)=4x+94\)
\(\Rightarrow6x+12+6x-6=4x+94\)
\(\Rightarrow\left(6x+6x\right)+\left(12-6\right)=4x+94\)
\(\Rightarrow12x+6=4x+94\)
\(\Rightarrow12x-4x=94-6\)
\(\Rightarrow8x=88\Leftrightarrow x=11\)
b) \(5.\left(2x-1\right)-3.\left(2x-2\right)=2x+29\)
\(\Rightarrow10x-5-6x-6=2x+29\)
\(\Rightarrow\left(10x-6x\right)+\left(-5-6\right)=2x+29\)
\(\Rightarrow4x-11=2x+29\)
\(\Rightarrow4x-2x=29+11\)
\(\Rightarrow2x=30\Leftrightarrow x=15\)
mk làm lun
1,= 6x+12+5x-6= 4x+94
= 12x +6 = 4x+94
= 8x= 88
x= 11
2,= 10x-5-6x+6= 2x+29
= 4x+1= 2x+29
= 2x= 28
x= 14