K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2021

\(\left|n-3\right|\ge0,\forall n\\ \Rightarrow A=\left|n-3\right|+2\ge2\)

Dấu \("="\Leftrightarrow n=3\)

\(\left|n-3\right|+2\ge2\forall n\)

Dấu '=' xảy ra khi n=3

5 tháng 9 2021

Ta có \(\left(n+3\right)^2\ge0\forall x\) \(\Rightarrow4-\left(n+3\right)^2\le4\forall x\)

Dấu "=" xảy ra khi \(n+3=0\Leftrightarrow n=-3\)

Vậy \(A_{min}=4\) khi \(x=-3\)

5 tháng 9 2021

Để A đạt GTLN thì (n+3)2=0

⇒n+3=0

⇒n=-3

GTLN của A=4

+ Với n = 1 ta có:

Vế trái = 1. 4= 4.

Vế phải = 1.(1+ 1)2 = 4.

=> Vế trái = Vế phải. Vậy (1) đúng với n = 1.

+ Giả sử (1) đúng với n=k; k ∈ N*; tức là ta có:

1.4+2.7+⋅⋅⋅+k(3k+1)=k(k+1)2 (2)

Ta chứng minh nó cũng đúng với n= k+1. Có nghĩa ta phải chứng minh:

1.4+2.7+⋅⋅⋅+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)2

+ Thật vậy do 1.4+ 2.7+ ...+ k. ( 3k+ 1) = k( k+1)2 nên

1.4+2.7+⋯+k( 3k+1)+( k+1).(3k+4)=k(k+1)2+(k+1)(3k+4)

= k( k2+2k+ 1)+ 3k2 + 4k+ 3k+ 4

= k3 + 2k2 + k+3k2 + 7k+ 4 = k3 + 5k2 + 8k+ 4 = (k + 1).(k + 2)2

Do đó (1) đúng với mọi số nguyên dương n.

6 tháng 2 2022

a) Ta có: \(A=\dfrac{4}{n-1}\left(n\in Z\right)\)

Để biểu thức \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)

Vậy \(n\ne1\) thì biểu thức \(A\) là phân số.

b) Ta có: \(\dfrac{4}{n-1}\left(n\in Z\right)\)

Để biểu thức \(A\) là số nguyên thì \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)

Vậy \(n\in\left\{2;0;3;-1;5;-3\right\}\) thì biểu thức \(A\) là số nguyên.

a: Để A là phân số thì n-1<>0

hay n<>1

b: Để A là số nguyên thì \(n-1\inƯ\left(4\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)