Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y2 + 117 = x2
Dễ thấy : x2 > 117
\(\Rightarrow\) x > 10
Do x nguyên tố nên x lẻ \(\Rightarrow\) x2 lẻ
Mà y2 + 117 = x2 nên y2 chẵn \(\Rightarrow\) y chẵn
Mà y nguyên tố nên y = 2
Thay vào đề bài ta có : 22 + 117 = x2
\(\Rightarrow\) 121 = x2 = 112
\(\Rightarrow\) x = 11 ( thỏa mãn )
Vậy x = 11 ; y = 2
Đặt A là tên của biểu thức trên
2A = \(\frac{7.2}{5.9}+\frac{7.2}{9.11}+\frac{7.2}{11.13}+\frac{7.2}{13.15}+...+\frac{7.2}{2015.2017}\)
2A = \(7\left(\frac{2}{5.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{2015.2017}\right)\)
2A = \(7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
2A = \(7\left(\frac{1}{5}-\frac{1}{2017}\right)\)
2A = \(7\cdot\frac{2012}{10085}\)
2A = \(\frac{14084}{10085}\)
A = \(\frac{14084}{10085}:2\)
A = \(\frac{7042}{10085}\)
\(\frac{7}{5.9}+\frac{7}{9.11}+\frac{7}{11.13}+\frac{7}{11.13}+...+\frac{7}{2015.2017}\)
\(=\frac{7}{5.9}+\frac{7}{2}.\left(\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{2015.2017}\right)\)
\(=\frac{7}{45}+\frac{7}{2}.\left(\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\frac{4}{7}x-\frac{2}{3}=\frac{1}{5}\)
\(\Leftrightarrow\frac{4}{7}x=\frac{1}{5}+\frac{2}{3}\)
\(\Leftrightarrow\frac{4}{7}x=\frac{3}{15}+\frac{10}{15}\)
\(\Leftrightarrow\frac{4}{7}x=\frac{13}{15}\)
\(\Leftrightarrow x=\frac{13}{15}:\frac{4}{7}=\frac{13}{15}\cdot\frac{7}{4}=\frac{91}{60}\)
\(\left(x-2011\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\cdot\frac{2}{9}=\frac{16}{9}\)
\(x-2011=8\)
\(x=2019\)
\(\frac{x-2011}{12}+\frac{x-2011}{20}+\frac{x-2011}{30}+\frac{x-2011}{42}+\frac{x-2011}{56}+\frac{x-2011}{72}=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\frac{2}{9}=\frac{16}{9}\)
\(x-2011=8\Rightarrow x=2019\)
Gọi số tổ được chia thành là a tổ
=> 24 ; 108 chia hết cho a
=> a thuộc UC(24;108) ; UCLN(24;108) =12
=> a thuộc U(12) ={1;2;3;4;6;12}
a lớn nhất a =12
vậy chia nhiều nhất thành 12 tổ
25*3 thay bằng các chữ số 2, 5 để 25*3 chia het cho 3 va ko chia het cho 9
có \(2+5+x+3⋮3\)
=>x=2;5;8
mà\(2+5+x+3\)không chia hết cho 9
=>x=2;5
Ta có : \(B=4+3^2+3^3+...+3^{2004}\)
\(=1+3+3^2+3^3+...+3^{2004}\)
\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{2005}\)
\(\Rightarrow3B-B=\left(3+3^2+3^3+...+3^{2005}\right)-\left(1+3+3^2+...+3^{2004}\right)\)
\(\Rightarrow2B=3^{2005}-1\)
\(\Rightarrow B=\frac{3^{2005}-1}{2}< 3^{2005}\)
Hay : \(B< C\)
Vậy : \(B< C\)
Hình như sai đề hay sao đấy bạn Nam đáng lẽ 4 thành 3
Sửa lại :
\(B=3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\)
\(3B=3.\left(3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\right)\)
\(=3^2+3^3+3^4+3^5+...+3^{2004}+3^{2005}\)
\(3B-B=\left(3^2+3^3+3^4+3^5+...+3^{2004}+3^{2005}\right)-\left(3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\right)\)
\(2B=3^{2005}-3\)
\(B=\frac{3^{2005}-3}{2}< 3^{2005}=C\)
\(\Rightarrow B< C\)
2xy - x - 4y = -7
2xy - x - 4y + 2 = -7 + 2
x.(2y - 1) - 2.(2y - 1) = -5
(2y-1).(x - 2) = -5
\(\Rightarrow\)2y-1 và x - 2 \(\in\)Ư(-5) = {-1;-5;1;5}
Lập bảng
2y-1 -1 -5 1 5
y 0 -2 1 3
x - 2 5 1 -5 -1
x 7 3 -3 1
x = 7 | x = 3 | x = -3 | x = 1
y = 0 | y = -2 | y = 1 | y = 3