K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2019

\(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow2x^3+8x=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^3+8x=2x^3-16\)

\(\Leftrightarrow2x^3+8x-2x^3=2x^3-16-2x^3\)

<=> 8x = -16

=> x = 2

5 tháng 2 2019

2x(x+2)2 -8x2=2(x-2)(x2+2x+4)

<=>2x(x2+4x+4)-8x2=(2x-4)(x2+2x+4)

<=>2x3+8x2+8x-8x2=2x3+4x2+8x-4x2-8x-16

<=>2x3+8x              = 2x3-16

<=>2x3+8x-2x3       = -16

<=>8x                     =-16

<=>x                       =-16/8

<=>x                      = -2

Vậy:         S={-2}.

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

Ta có: \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\)

\(\Leftrightarrow2x^3+8x-2x^3+16=0\)

\(\Leftrightarrow8x+16=0\)

\(\Leftrightarrow8x=-16\)

hay x=-2

Vậy: S={-2}

a: Ta có: \(8x+11-3=5x+x-3\)

\(\Leftrightarrow8x+8=6x-3\)

\(\Leftrightarrow2x=-11\)

hay \(x=-\dfrac{11}{2}\)

b: Ta có: \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow2x\left(x^3+6x^2+12x+8\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^4+12x^3+24x^2+16x-8x^2-2x^3+16=0\)

\(\Leftrightarrow2x^4+10x^3+16x^2+16x+16=0\)

\(\Leftrightarrow2x^4+4x^3+6x^3+12x^2+4x^2+8x+8x+16=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^3+6x^2+4x+8\right)=0\)

\(\Leftrightarrow x+2=0\)

hay x=-2

c: Ta có: \(\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\)

\(\Leftrightarrow2x^2-3x+2x-3-2x^2-10x+x+5=0\)

\(\Leftrightarrow-10x+2=0\)

\(\Leftrightarrow-10x=-2\)

hay \(x=\dfrac{1}{5}\)

d: Ta có: \(\dfrac{1}{10}-2\cdot\left(\dfrac{1}{2}t-\dfrac{1}{10}\right)=2\left(t-\dfrac{5}{2}\right)-\dfrac{7}{10}\)

\(\Leftrightarrow\dfrac{1}{10}-t+\dfrac{1}{5}=2t-5-\dfrac{7}{10}\)

\(\Leftrightarrow-t-2t=-\dfrac{57}{10}-\dfrac{3}{10}=-6\)

hay t=2

16 tháng 3 2016

<=>2x(x+2)2-8x2=2x(x2+4)

=>2x(x2+4)=2(x-2)(x2+2x+4)

=>x=-2

26 tháng 4 2018

\(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow\)\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow\)\(2x^3+8x^2+8x-8x^2=2x^3-16\)

\(\Leftrightarrow\)\(8x=-16\)

\(\Leftrightarrow\)\(x=-2\)

Vậy...