Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,x2-2x-35=0
=>(x2-2x+1)-36=0
=>(x-1)2-62=0
=>(x-1-6)(x-1+6)=0
=>(x-7)(x+5)=0
=>x=7 hoặc x=-5
\(d,x\left(x-3\right)-7x+21=0\)
\(\Leftrightarrow x\left(x-3\right)-7\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=7\end{cases}}}\)
\(a,2x\left(x-7\right)+5x-35=0\)
\(\Leftrightarrow2x\left(x-7\right)+5\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\2x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-\frac{5}{2}\end{cases}}}\)
\(c,4x^2+12x+9=0\)
\(\Leftrightarrow4x^2+6x+6x+9=0\)
\(\Leftrightarrow2x\left(2x+3\right)+3\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow x=-\frac{3}{2}\)
\(b,5x+2\left(x-7\right)=35\\ \Leftrightarrow5x+2x-14-35=0\\ \Leftrightarrow7x-49=0\\ \Leftrightarrow7x=49\\ \Leftrightarrow x=7\\ d,đk:x\ne2;x\ne0\\ \dfrac{x+2}{x-2}-\dfrac{1}{x}-\dfrac{2}{x^2-2x}=0\\ \Leftrightarrow\dfrac{x+2}{x-2}-\dfrac{1}{x}-\dfrac{2}{x\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+2\right)-\left(x-2\right)-2}{x\left(x-2\right)}=0\\ \Leftrightarrow x^2+2x-x+2-2=0\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\left(kot/m\right)\\x=-1\left(t/m\right)\end{matrix}\right.\)
\(5x+2\left(x-7\right)=35\)
\(\Leftrightarrow5x+2x-14=35\)
\(\Leftrightarrow7x-14=35\)
\(\Leftrightarrow7x=49\)
\(\Leftrightarrow x=7\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{7\right\}\)
\(\dfrac{x+2}{x-2}-\dfrac{1}{x}-\dfrac{2}{x^2-2x}=0\) \(\text{ĐKXĐ:}x\ne0;x\ne2\)
\(\Leftrightarrow\dfrac{x+2}{x-2}-\dfrac{1}{x}-\dfrac{2}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=0\)
\(\Rightarrow x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(\text{loại}\right)\\x=-1\left(\text{nhận}\right)\end{matrix}\right.\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{-1\right\}\)
a) \(21x+7=15x+35\)
\(\Leftrightarrow21x-15x=35-7\)
\(\Leftrightarrow6x=28\)
\(\Leftrightarrow x=\frac{28}{6}\)
b)\(|5x+3|-2x=x-17\)
\(\Leftrightarrow|5x+3|=3x-17\)
\(\Leftrightarrow\orbr{\begin{cases}5x+3=3x-17\\5x+3=17-3x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-20\\8x=14\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=-10\\x=\frac{4}{7}\end{cases}}\)
c) \(\left(5x+2\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=-2\\3x=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{2}{5}\\x=\frac{4}{3}\end{cases}}}\)
a) \(21x+7=15x+35\)
\(\Leftrightarrow\)\(6x=28\)
\(\Leftrightarrow\)\(x=\frac{14}{3}\)
Vậy...
b) \(\left|5x+3\right|-2x=x-17\)
\(\Leftrightarrow\)\(\left|5x+3\right|=3x-17\)
Nếu \(x\ge-\frac{3}{5}\)thì pt trở thành:
\(5x+3=3x-17\)
\(\Leftrightarrow\)\(2x=-20\)
\(\Leftrightarrow\)\(x=-10\)(loại)
Nếu \(x< -\frac{3}{5}\)thì pt trở thành:
\(-5x-3=3x-17\)
\(\Leftrightarrow\)\(8x=14\)
\(\Leftrightarrow\) \(x=\frac{7}{4}\) (loại)
Vậy pt vô nghiệm
c) \(\left(5x+2\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x+2=0\\3x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{2}{5}\\x=\frac{4}{3}\end{cases}}\)
Vậy...
a) ( 3x - 1 ) ( 2x + 7 ) - ( x + 1 ) ( 6x + 5 ) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 - 5x + 6x - 5) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 + x - 5 ) = 16
<=> 6x2+ 21x - 2x - 7 - 6x2 -x + 5 = 16
<=> 18x - 2 = 16
<=> 18x = 18
=> x = 1
Vậy....
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
c. x^2-5x +6 = 0
<=> x^2 - 5x = -6
<=> - 4x = -6
<=> x= -6/-4
Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm
A) 2x2(x+3) - x(x+3) = 0 <=> x(x - 3)(2x-1)=0
B) (2x+5)2 - (x+2)2=0 <=> (x+3)(3x+7)=0
C) (x2-2x) - (3x-6)=0 <=> (x-2)(x-3)=0
D) (2x-7)(2x-7-6x+18)=0 <=> (2x-7)(-4x+11)=0
E) (x-2)(x+1) - (x-2)(x+2)=0 <=> (x-2)*(-1)=0 <=> x-2=0
G) (2x-3)(2x+2-5x)=0 <=> (2x-3)(-3x+2)=0
H) (1-x)(5x+3+3x-7)=0 <=> (1-x)(8x-4)=0
F) (x+6)*3x=0
I) (x-3)(4x-1-5x-2)=0 <=> (x-3)(-x-3)=0
K) (x+4)(5x+8)=0
H) (x+3)(4x-9)=0
2x(x - 7) + 5x - 35 = 0
=> 2x(x - 7) + 5(x - 7) = 0
=> (x - 7)(2x + 5) = 0
=> x - 7 = 0 hoặc 2x + 5 = 0
=> x = 7 hoặc x = -5/2
Trả lời:
\(2x\left(x-7\right)+5x-35=0\)
\(\Leftrightarrow2x\left(x-7\right)+5\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\2x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-\frac{5}{2}\end{cases}}}\)
Vậy x = 7; x = - 5/2 là nghiệm của pt.