K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

\(2x\left(x-3\right)-16x^2\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)\left(1+8x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-\frac{1}{8}\end{matrix}\right.\)

1 tháng 11 2017

x3-16x=0

=> x(x2-16)=0

=> x(x-4)(x+4)=0

=> \(\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

vậy x=0 ;x=4;x=-4

3x(2-x)-2+x=0

=> 3x(2-x)-(2-x)=0

=> (2-x)(3x-1)=0

=> \(\left[{}\begin{matrix}2-x=0\\3x-1=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=2\\3x=1\Rightarrow x=\dfrac{1}{3}\end{matrix}\right.\)

vậy x=2 hoặc x=\(\dfrac{1}{3}\)

1 tháng 11 2017

c) (x+3)(x2-2x+3)=(x+3)(5-2x)

=>(x+3)(x2-2x+3) - (x+3)(5-2x)=0

=>(x+3)(x2-4x-2)=0

=>\(=>\left[{}\begin{matrix}x+3=0\\\text{x^2-4x-2}=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\\left(x-2\right)^2-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\\left(x-2\right)^2=6\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=\sqrt{6}+2\\x=-\sqrt{6}+2\end{matrix}\right.\)

23 tháng 7 2017

\(a,x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

\(b,x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow\left(x-2\right)x\left(x^2+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x=0\\x^2+10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\\left[{}\begin{matrix}x^2=10\\x^2=-10\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\sqrt{10}\\x=-\sqrt{10}\end{matrix}\right.\)\(c,\left(2x-1\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow4x^2-4x+1=x^2+6x+9\)

\(\Leftrightarrow4x^2-4x+1-x^2-6x-9=0\)

\(\Leftrightarrow3x^2-10x-8=0\)

\(\Leftrightarrow3x^2-12x+2x-8=0\)

\(\Leftrightarrow3x\left(x-4\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Phần d tương tự

23 tháng 7 2017

Câu a :

\(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-4^2\right)=0\)

\(\Leftrightarrow x\left[\left(x+4\right)\left(x-4\right)\right]=0\)

\(\Rightarrow\) \(x=0\)

\(\Rightarrow\) \(x+4=0\Rightarrow x=-4\)

\(\Rightarrow x-4=0\Rightarrow x=4\)

Câu b :

\(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)\) \(=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Rightarrow x=0\)

\(\left(x-2\right)=0\Rightarrow x=2\)

\(x^2+10=0\) \(\Rightarrow\) x ( loại )

24 tháng 8 2018

1) (x + 2)(x - 2) - (x + 3)(x + 1)

= x^2 - 4 - (x - 3)(x + 1)

= x^2 - 4 - x^2 + 2x + 3

= 2x - 1

2) a) 5(x - y) - 3x(y - x)

= 5x - 5y - 3x(y - x)

= 5x - 5y - 3xy + 3x2

b) 5x^2 - 16 + 3

= (5x^2 - x) + (-15x + 3)

= x(5x - 1) - 3(5x - 1)

= (5x - 1)(x - 3)

3) a) 2x(x + 3) + 12 - 2x^2 = 0

<=> 2x(x + 3) + 12 - 2x^2 = 0 - 12

<=> 2x(x + 3) - 2x^2 = -12

<=> x = -2

b) x^3 - 16x = 0

<=> x(x + 4)(x - 4) = 0

<=> x = 0

<=> x = 0; x = +- 4

c) (2x - 1)^2 = (x + 3)^2

<=> 4x^2 - 4x + 1 = x^2 + 6x + 9

<=> 4x^2 - 4x + 1 = x^2 + 6x + 9 - 9

<=> 4x^2 - 4x - 8 = x^2 + 6x

<=> 4x^2 - 4x - 8 = x^2 + 6x - 6x

<=> 4x^2 -10x - 8 = x^2

<=> 3x^2 - 10x - 8 = 0

<=> x = 4, x = -2/3

d) x^2 - x - 6 = 0

<=> x = -2; x = 3

3 tháng 9 2018

\(\left(x+2\right)\left(x-2\right)-\left(x+3\right)\left(x+1\right)\)

\(=x^2-4-\left(x^2+4x+3\right)\)

\(=x^2-4-x^2-4x-3\)

\(=-4x-7\)

22 tháng 7 2015

b) x(x - 3)+ 4( 3 - x) =0

=> x(x - 3) - 4( x - 3) = 0

=> (x - 3)( x - 4) =0

<=> x - 3 = 0  hoặc x - 4= 0

=>      x= 3    hoặc    => x= 4

Vậy x= 3 hoặc 4

a) 7x- 2x+ 56 - 16x = 0

=> x( 7 - 2x) + 8 ( 7 - 2x) = 0

=> ( 7 - 2x) ( x+8) =0

<=> 7 - 2x = 0  hoặc  x+ 8 =0

=>  x=  7/2      hoặc   x= -8 ( loại vì x\(\ge\) 0 )

Vậy x= 7/2

 

23 tháng 9 2018

1,=\(x^2-3x-2x^2+6x=-x^2+3x\)

2,=\(3x^2-x-5+15x=3x^2+14x-5\)

3,=\(5x+15-6x^2-6x=-6x^2-x+15\)

4,=\(4x^2+12x-x-3=4x^2+11x-3\)

5: =>(x+5)^3=0

=>x+5=0

=>x=-5

6: =>(2x-3)^2=0

=>2x-3=0

=>x=3/2

7: =>(x-6)(x-10)=0

=>x=10 hoặc x=6

8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)

=>(x-4)^3=0

=>x-4=0

=>x=4

25 tháng 10 2019

\(2x^2-6x=0\)

\(\Rightarrow2x.\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0:2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}.\)

\(2x.\left(x+2\right)-3.\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right).\left(2x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0-2\\2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-2;\frac{3}{2}\right\}.\)

\(x^3-16x=0\)

\(\Rightarrow x.\left(x^2-16\right)=0\)

\(\Rightarrow x.\left(x^2-4^2\right)=0\)

\(\Rightarrow x.\left(x-4\right).\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0+4\\x=0-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy \(x\in\left\{0;4;-4\right\}.\)

Chúc bạn học tốt!

12 tháng 10 2020

a) 2x (x-5) -(x2-10x +25)=0

\(\Leftrightarrow\)2x(x-5)-(x-5)2=0

\(\Leftrightarrow\)(x-5)(2x-x+5)=0

\(\Leftrightarrow\)(x-5)(x+5)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

b) x2 - 9 +3x(x+3) = 0

\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0

\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0

\(\Leftrightarrow\)(x+3)(x-3+3x)=0

\(\Leftrightarrow\)(x+3)(4x-3)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)

c) x3 - 16x = 0

\(\Leftrightarrow\)x(x2-16)=0

\(\Leftrightarrow\)x(x-4)(x+4)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

d) (2x+3)(x-2) - (x2 -4x+4) = 0

\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0

\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0

\(\Leftrightarrow\)(x-2)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

e) 9x2 -(x2 -2x +1)=0

\(\Leftrightarrow\)(3x)2-(x-1)2=0

\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0

\(\Leftrightarrow\)(2x+1)(4x-1)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

f)x3-4x2 -9x +36 = 0

\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0

\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0

\(\Leftrightarrow\)(x-4)(x2-9)=0

\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)

g) 3x - 6 = (x-1).(x-2)

\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)

\(\Leftrightarrow\)x-1=3

\(\Leftrightarrow\)x=4

i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)

k) x2 -1 = (x-1).(2x+3)

\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)

\(\Leftrightarrow\)x+1=2x+3

\(\Leftrightarrow\)x-2x=3-1

\(\Leftrightarrow\)-x=2

\(\Leftrightarrow\)x=-2

l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6

\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6

\(\Leftrightarrow\)6x-8=6

\(\Leftrightarrow\)6x=14

\(\Leftrightarrow\)x=\(\frac{7}{3}\)