Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(\frac{10}{x+2}=\frac{60}{6(x+2)}=\frac{60(x-2)}{6(x+2)(x-2)}=\frac{60(x-2)}{6(x^2-4)}\)
\(\frac{5}{2x-4}=\frac{15(x+2)}{6(x-2)(x+2)}=\frac{15(x+2)}{6(x^2-4)}\)
\(\frac{1}{6-3x}=\frac{x+2}{3(2-x)}=\frac{2(x+2)^2}{6(2-x)(2+x)}=\frac{-2(x+2)^2}{6(x^2-4)}\)
b.
\(\frac{1}{x+2}=\frac{x(2-x)}{x(x+2)(2-x)}=\frac{x(2-x)}{x(4-x^2)}\)
\(\frac{8}{2x-x^2}=\frac{8(x+2)}{(x+2)x(2-x)}=\frac{8(x+2)}{x(4-x^2)}\)
c.
\(\frac{4x^2-3x+5}{x^3-1}\)
\(\frac{1-2x}{x^2+x+1}=\frac{(1-2x)(x-1)}{(x-1)(x^2+x+1)}=\frac{-2x^2+3x-1}{x^3-1}\)
\(-2=\frac{-2(x^3-1)}{x^3-1}\)
\(A=\frac{x^3-3x^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)
\(=\frac{x^2\left(x-5\right)+2x\left(x-5\right)+3\left(x-5\right)}{x^4\left(x-5\right)+4x^3\left(x-5\right)+10x^2\left(x-5\right)+12x\left(x-5\right)+9\left(x-5\right)}\)
\(=\frac{\left(x-5\right)\left(x^2+2x+3\right)}{\left(x-5\right)\left(x^4+4x^3+10x^2+12x+9\right)}\)
\(=\frac{x^2+2x+3}{x^4+4x^3+10x^2+12x+9}\)
\(=\frac{x^2+2x+3}{\left(x^2\right)^2+2.x^2.2x+\left(2x\right)^2+6x^2+12x+9}\)
\(=\frac{x^2+2x+3}{\left(x^2+2x\right)^2+2.\left(x^2+2x\right).3+3^2}\)
\(=\frac{\left(x^2+2x+3\right)}{\left(x^2+2x+3\right)^2}=\frac{1}{x^2+2x+3}\)
b, \(A=\frac{1}{x^2+2x+3}=\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của A là \(\frac{1}{2}\) khi x = -1
\(=\frac{\left(x+1\right)\left(x+2\right)\left(x-5\right)\left(x+5\right)}{\left(x+2\right)\left(x+5\right)}=\left(x+1\right)\left(x-5\right)=x^2-4x-5\)
\(=\left(x^2+2x+1\right)+\left(y^2-8y+16\right)=\left(x+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)
dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
Bài 1:
a) \(2x\left(x^2-5x+6\right)=2x^3-10x^2+12x\)
b) \(\left(7x^5+14x^2y^3-28x^3y^2\right):7x^2=x^3+2y^3-4xy^2\)
Bài 2:
\(x^2+y^2+2x-8y+17=\left(x^2+2x+1\right)+\left(y^2-8y+16\right)=\left(x+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)
\(\Leftrightarrow2x\left(x+5\right)-3\left(x-2\right)=7x+1\)
\(\Leftrightarrow2x^2+10x-3x+6-7x-1=0\)
\(\Leftrightarrow2x^2+5=0\)(vô lý)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne2\\x\ne-5\end{matrix}\right.\)
\(\dfrac{2x}{x-2}-\dfrac{3}{x+5}=\dfrac{7x+1}{x^2+3x-10}\\ \Leftrightarrow\dfrac{2x\left(x+5\right)}{\left(x+5\right)\left(x-2\right)}-\dfrac{3\left(x-2\right)}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x^2-2x+5x-10}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x\left(x-2\right)+5\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}-\dfrac{7x+1}{\left(x+5\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+10x-3x+6-7x-1}{\left(x+5\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x^2+5}{\left(x+5\right)\left(x-2\right)}=0\\ \Rightarrow2x^2+5=0\left(vô.lí\right)\)
Vậy pt vô nghiệm