Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^x=2^{3\left(y+1\right)}\Rightarrow x=3y+3\)
\(3^{2y}\Rightarrow3^{x-9}\Rightarrow2y=x-9\Rightarrow x=2y+9\)
\(\Rightarrow3y+3=2y+9\Rightarrow y=6\Rightarrow x=21\Rightarrow x+y=27\)
Ta có:\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow2^x=2^{3y+3}\Rightarrow x=3y+3\)
\(\Rightarrow9^y=3^{x-9}\Rightarrow3^{2y}=3^{3y+3-9}\Rightarrow3^{2y}=3^{3y-6}\Rightarrow2y=3y-6\)
\(\Rightarrow2y-3y=-6\Rightarrow-y=-6\Rightarrow y=6\)
\(\Rightarrow x=6\cdot3+3=21\)
\(\Rightarrow x+y=21+6=27\)
a, Với x = 3 và y = -2 ta có:
\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-\left|3\right|\right)+\left(-2\right)\)
\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-3\right)-2\)
\(A=\dfrac{3}{2}+\dfrac{4}{9}.3-2\)
\(A=\dfrac{3}{2}+\dfrac{4}{3}-2\)
\(A=\dfrac{5}{6}\)
Với x = 3 và y = -3 ta có:
\(B=\left|2.3-1\right|+\left|3.\left(-3\right)+2\right|\)
\(B=\left|5\right|+\left|-7\right|\)
\(B=5+7=12\)
Hoctot ! ko hiểu chỗ nào cứ hỏi cj nhé
Ta có:
\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow x=3\left(y+1\right)\) (1)
\(9^y=3^{x-9}\Rightarrow3^{2y}=3^{x-9}\Rightarrow2y=x-9\) (2)
Thay (1) vào (2) ta có:
\(2y=3y+3-9\\ 2y=3y-6\\ 2y-3y=-6\\ -y=6\\ \Rightarrow y=6\)
Thay \(y=6\) vào \(2y=x-9\), ta có:
\(26=x-9\\ \Rightarrow x=26+9\\ \Rightarrow x=35\)
\(\Rightarrow x+y=6+35=41\)
Vậy: \(x+y=41\)
Mình nhầm, xin lỗi
Chỗ mà thay y=6 vào 2y = x-9 á, đổi 26 = x - 9 thành: 2.6 = x - 9 nha! Phần còn lại mình nghĩ bạn tự tính cũng được :)
a) \(\left(1-\frac{2}{5}\right).\left(1-\frac{2}{7}\right).\left(1-\frac{2}{9}\right)...\left(1-\frac{2}{99}\right)\)
\(=\frac{3}{5}.\frac{5}{7}.\frac{7}{9}...\frac{97}{99}\)
\(=\frac{3}{99}=\frac{1}{33}\)
b) Ta có: 2x = 8y+1 = (23)y+1 = 23y+3
=> x = 3y + 3 (1)
9y = 3x-9
=> (32)y = 3x-9
=> 32y = 3x-9
=> 2y = x - 9 (2)
Từ (1) và (2) => x + 2y = 3y + 3 + x - 9
=> x + y = 2y + x - 6
a) \(A=2x^2-\dfrac{1}{3}y\)
A= \(\left(2-\dfrac{1}{3}\right)\)\(x^2y\)
A=\(\dfrac{5}{3}\)\(x^2y\)
Tại \(x=2;y=9\) ta có
A=\(\dfrac{5}{3}\).(2)\(^2\).9 = \(\dfrac{5}{3}\).4 .9 = 60
Vậy tại \(x=2;y=9\) biểu thức A= 60
b) P=\(2x^2+3xy+y^2\) (\(y^2\) là 1\(y^2\) nha bạn)
P=\(\left(2+3+1\right)\left(x^2.x\right)\left(y.y^2\right)\)
P= 6\(x^3y^3\)
Tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) ta có
P= 6.\(\left(-\dfrac{1}{2}\right)^3.\left(\dfrac{2}{3}\right)^3\) = 6.\(\left(-\dfrac{1}{8}\right).\dfrac{8}{27}\) = \(-\dfrac{2}{9}\)
Vậy tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) biểu thức P= \(-\dfrac{2}{9}\)
c)\(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)
=\(\left((-\dfrac{1}{2}).\dfrac{2}{3}\right)\left(x.x^3\right).y^2\)
=\(-\dfrac{1}{3}\)\(x^4y^2\)
Tại \(x=2;y=\dfrac{1}{4}\)ta có
\(-\dfrac{1}{3}\).\(\left(2\right)^4.\left(\dfrac{1}{4}\right)^2=-\dfrac{1}{3}.16.\dfrac{1}{16}=-\dfrac{1}{3}\)
\(\)Vậy \(x=2;y=\dfrac{1}{4}\) biểu thức \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)= \(-\dfrac{1}{3}\)
CHÚC BẠN HỌC TỐT NHA
\(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
\(\left(2x+y^2\right)\left(2x-y^2\right)=4x^2-y^4\)
\(\dfrac{x-2}{2}=\dfrac{y-4}{3}=\dfrac{z-8}{5}\)
\(\Rightarrow\dfrac{x-2}{2}+2=\dfrac{y-4}{3}+2=\dfrac{z-8}{5}+2\)
\(\Rightarrow\dfrac{x+2}{2}=\dfrac{y+2}{3}=\dfrac{z+2}{5}\)
\(\Rightarrow\left(\dfrac{x+2}{2}\right)^2=\left(\dfrac{y+2}{3}\right)^2=\left(\dfrac{z+2}{5}\right)^2\)
\(\Rightarrow\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}=\dfrac{3.\left(y+2\right)^2}{27}\dfrac{\left(x+2\right)^2+3\left(y+2\right)^2-\left(z+2\right)^2}{4+27-25}=\dfrac{24}{6}=4\)\(\Rightarrow\left\{{}\begin{matrix}\left(x+2\right)^2=16\\\left(y+2\right)^2=36\\\left(z+2\right)^2=100\end{matrix}\right.\)
Bạn chia trường hợp rồi tìm x,y,z nhé
a) 3x=9y-1 => 3x= 32(y-1) => x=2(y-1)=2y-2
8y=2x+8 => 23y=2x+8 => 3y=x+8
3y-(2y-2)=x+8-x
y+2=8 => y=6
x+8=3y=3.6=18 => x=10
a) Ta có:
+) \(3^x=9^{y-1}\)
\(\Rightarrow3^x=3^{2.\left(y-1\right)}\)
\(\Rightarrow x=2.\left(y-1\right)\left(1\right)\)
+) \(8^y=2^{x+8}\)
\(\Rightarrow2^{3y}=2^{x+8}\)
\(\Rightarrow3y=x+8\left(2\right)\)
Thay (1) vào (2) ta được:
\(3y=\left[2.\left(y-1\right)\right]+8\)
\(\Rightarrow3y=2y-2+8\)
\(\Rightarrow3y=2y+6\)
\(\Rightarrow y=6\)
\(\Rightarrow x=2.\left(6-1\right)=10\)
Vậy \(x=10;y=6\)
\(2x=8^{\left(y+1\right)}=2^{3\left(y+1\right)}\Rightarrow x=3y+3\) ( 1 )
\(9y=3^{2y}=3^{x-9}\Rightarrow2y=x-9\) ( 2 )
\(x+2y=3y+3+x-9\)
\(y=6\)
\(x=3.6+3=21\)
\(\Rightarrow x+y=27\)
Nếu có j thì nói nha ( giúp thì nói t giải cho )
Rồng Đỏ Bảo Lửa cảm ơn a nhìu nha ( hôm sau có j e nhờ a giải )