Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: 2x=5y
nên \(\dfrac{x}{5}=\dfrac{y}{2}\)
hay \(\dfrac{x}{5}=\dfrac{2y}{4}\)
mà x-2y=-12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{2y}{4}=\dfrac{x-2y}{5-4}=-12\)
Do đó: x=-60; y=-24
b: Ta có: 2x=3y=4z
nên \(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}\)
mà x+y-z=21
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+y-z}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}=\dfrac{21}{\dfrac{7}{12}}=36\)
Do đó: x=18; y=12; z=9
a) Giải:
Ta có: \(2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}=\frac{2x+3y-5z}{12+12-15}=\frac{-1,8}{9}=-0,2\)
+) \(\frac{x}{6}=-0,2\Rightarrow x=-1,2\)
+) \(\frac{y}{4}=-0,2\Rightarrow y=-0,8\)
+) \(\frac{z}{3}=-0,2\Rightarrow z=-0,6\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-1,2;-0,8;-0,6\right)\)
b) Giải:
Ta có: \(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{20}=\frac{y}{8}\)
\(3y=8z\Rightarrow\frac{y}{8}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{x+2y+z}{20+16+3}=\frac{-39}{39}=-1\)
+) \(\frac{x}{20}=-1\Rightarrow x=-20\)
+) \(\frac{y}{8}=-1\Rightarrow y=-8\)
+) \(\frac{z}{3}=-1\Rightarrow z=-3\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-20;-8;-3\right)\)
Ta có :
\(2x=3y=4x\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}=\frac{2x+3y-5z}{12+12-15}=-\frac{1,8}{9}=-\frac{1}{5}\)
\(\Rightarrow\begin{cases}x=-\frac{6}{5}\\y=-\frac{4}{5}\\z=-\frac{3}{5}\end{cases}\)
b)
\(\begin{cases}2x=5y\\3y=8z\end{cases}\)
\(\Rightarrow\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}\)
\(\Rightarrow\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{z}{3}=\frac{2y+x+z}{16+20+3}=-\frac{39}{39}=-1\)
\(\Rightarrow\begin{cases}x=-20\\y=-8\\z=-3\end{cases}\)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
Ta có : \(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{10}=\frac{y}{4}\) (1)
\(3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ; ta được :
\(\frac{x}{10}=\frac{y}{4}=\frac{5x}{50}=\frac{2y}{8}=\frac{5x-2y}{50-8}=\frac{4}{42}=\frac{2}{21}\)
Do đó :
\(\frac{x}{10}=\frac{2}{21}\Rightarrow x=\frac{20}{21}\)
\(\frac{y}{4}=\frac{2}{21}\Rightarrow y=\frac{8}{21}\)
\(\frac{z}{3}=\frac{2}{21}\Rightarrow z=\frac{2}{7}\)
VẬy ....
Bài 1: bn ghi thiếu đề rùi đó
Bài 2:
ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=k\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=k\Rightarrow x=15k\\\frac{y}{10}=k\Rightarrow y=10k\end{cases}}\)
z/6 = k => z = 6k
mà x.y = 600 => 15k.10k = 600
150.k2 = 600
k2 = 600:150
k2 = 4
=> k = 2 hoặc k = -2
TH1: k = 2
x = 15k => x = 15.2 => x = 30
y = 10k => y = 10.2 => y = 20
z = 6k => z = 6.2 => z = 12
TH2: k = -2
...
KL: (x;y;z) = { ( 30;20;12);(-30;-20;-12)}
Bài 3:
ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{y}{12}=\frac{z}{9}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{9}=\frac{2x}{16}=\frac{5y}{60}=\frac{z}{9}\)
ADTCDTSBN
có: \(\frac{2x}{16}=\frac{5y}{60}=\frac{z}{9}=\frac{2x-5y+z}{16-60+9}=\frac{14}{-35}=\frac{-2}{5}\)
\(\Rightarrow\frac{x}{8}=\frac{-2}{5}\Rightarrow x=\frac{-16}{5}\)
...
KL:...
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
Từ: 2x = 5y \(\Rightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{5}.\frac{1}{2}=\frac{y}{2}.\frac{1}{2}\Rightarrow\frac{x}{10}=\frac{y}{4}\left(1\right)\)
Từ 3y = 4z \(\Rightarrow\frac{y}{4}=\frac{z}{3}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{x}{10}=\frac{2y}{8}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{4}=\frac{z}{3}=\frac{2y}{8}=\frac{2y-z}{8-3}=\frac{33}{5}=6,6\)
Từ \(\frac{x}{10}=6,6\Rightarrow x=66\)
Từ \(\frac{y}{4}=6,6\Rightarrow y=26,4\)
Từ \(\frac{z}{3}=6,6\Rightarrow z=19,8\)
Vậy x = 66; y = 26,4 ; z = 19,8