Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(2x+5)(2x-7)-(2x-3)^2=36`
`<=>4x^2-14x+10x-35-(4x^2-12x+9)=36`
`<=>4x^2-4x-35-4x^2+12x-9=36`
`<=>8x-44=36`
`<=>8x=80`
`<=>x=10`
Vậy `S={10}`
Ta có: \(\left(2x+5\right)\left(2x-7\right)-\left(2x-3\right)^2=36\)
\(\Leftrightarrow4x^2-14x+10x-35-\left(4x^2-12x+9\right)=36\)
\(\Leftrightarrow4x^2-4x-35-4x^2+12x-9=36\)
\(\Leftrightarrow8x-44=36\)
\(\Leftrightarrow8x=80\)
hay x=10
Vậy: S={10}
a: Ta có: \(\left(x+2\right)^2+\left(2x-1\right)^2-\left(x-3\right)^2=36\)
\(\Leftrightarrow x^2+4x+4+4x^2-4x+1-x^2+6x-9=36\)
\(\Leftrightarrow4x^2+6x-4-36=0\)
\(\Leftrightarrow4x^2+6x-40=0\)
\(\text{Δ}=6^2-4\cdot4\cdot\left(-40\right)=676\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-6-26}{8}=-4\\x_2=\dfrac{-6+26}{8}=\dfrac{5}{2}\end{matrix}\right.\)
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
\( a)\left( {2x + 6} \right)\left( {4{x^2} - 12x + 36} \right) - 8{x^3} + 5\\ = 8{x^3} - 24{x^2} + 72x + 24{x^2} - 72x + 216 - 8{x^3} + 5\\ = 221 \)
Vậy giá trị của biểu thức không phụ thuộc vào biến
\(b)(x-5)(2x+3)-2x(x-3)+x+7\\=2x^2+3x-10x-15-2x^2+6x+x+7\\=-8\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
dề bài : cmr giá trị cá biểu thức sau ko phụ thuộc vào giá trị của biến
a, \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)
= \(\left(2x+6\right)\left[\left(2x\right)^2-2x.6+6^2\right]-8x^3+5\)
= \(\left(2x\right)^3+6^3-8x^3+5\)
= \(216+5=221\)
b, \(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
= \(10x^2+3x-10x-15-2x^2+6x+x+7\)
= \(8x^2-8\)
(2x + 5)(2x - 7) - (2x - 3)2 = 36
4x2 - 14x + 10x - 35 - 4x2 + 12x - 9 = 36
8x - 44 = 36
8x = 36 + 44
8x = 80
x = 10
1) (x+1)2+2x=x(x+1)+6
⇔x2+2x+1+2x=x2+x+6
⇔x2+2x+1+2x-x2-x-6=0
⇔3x-5=0
⇔x=\(\frac{5}{3}\)
Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{5}{3}\)}
\(\left(2x+5\right)\left(2x-7\right)-\left(2x-3\right)^2=36\)
\(\Leftrightarrow\left(4x^2+10x-14x-35\right)-\left(4x^2-12x+9\right)=36\)
\(\Leftrightarrow\left(4x^2-4x-35\right)-\left(4x^2-12x+9\right)=36\)
\(\Leftrightarrow4x^2-4x-35-4x^2+12x-9=36\)
\(\Leftrightarrow8x-44=36\)
\(\Leftrightarrow8x=80\)
\(\Leftrightarrow x=10\)
Vậy \(x=10\)