Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)
+) Lỗi lớn: Dấu bằng xảy ra: \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )
Nhưng mà thử vào chọn x= 1=> A = 3 > 1. Nên bài này sai.
Làm lại nhé!
A = | x - 2 | + | 2 x - 3 | + | 3 x - 4 |
= | x - 2 | + | 2 x - 3 | + 3 | x - 4/3 |
= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |
= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x | + | 2x - 8/3 | )
\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |
= 2/3 + 1/3 = 1
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)
\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)
\(=2x^2+x+1\)
b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)
c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)
\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)
d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)
\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)
\(=x^2-2x-5\)
a: Bậc là 4
Hệ só tự do -5
b: Bậc là 5
Hệ số tự do là 1
c: Bậc là 4
Hệ số tự do là 4
Mình thu gọn 2 đa thức trước r mới cộng nhé
\(P\left(x\right)=3x^2+7+2x^4-3x^2-4-5x+2x^3\)
\(P\left(x\right)=\left(3x^2-3x^2\right)+\left(7-4\right)+2x^4-5x+2x^3\)
\(P\left(x\right)=2x^4+2x^3-5x+3\)
\(Q\left(x\right)=-3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
\(Q\left(x\right)=\left(-3x^3+x^3\right)+2x^2+\left(-x^4+5x^4\right)+\left(x+4x\right)-2\)
\(Q\left(x\right)=-2x^3+4x^4+2x^2+5x-2\)
\(P\left(x\right)+Q\left(x\right)=2x^4+2x^3-5x+3-2x^3+4x^4+2x^2+5x-2\)
\(P\left(x\right)+Q\left(x\right)=\left(2x^4+4x^4\right)+\left(2x^3-2x^3\right)+\left(-5x+5x\right)+\left(3-2\right)+2x^2\)
\(P\left(x\right)+Q\left(x\right)=6x^4+1+2x^2\)
Ta có:
\(\frac{4^{x+2}+4^{x+1}+4^x}{21}=\frac{4^x\cdot\left(4^2+4+1\right)}{21}=\frac{4^x\cdot21}{21}=4^x\)
\(\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{31}=\frac{9^x\cdot\left(1+3+3^2\right)}{31}=\frac{9^x\cdot13}{31}\)
Xét \(4^x=\frac{9^x\cdot13}{31}\)
=> \(\frac{4^x}{9^x}=\frac{13}{31}\)
Vì \(\hept{\begin{cases}\left(4;9\right)=1\\13\notin B\left(4\right)\\31\notin B\left(9\right)\end{cases}\Rightarrow x\in\varnothing}\)
Vậy x không tồn tại
1) \(5^{x+1}-5^x=20\Leftrightarrow5^x\left(5-1\right)=20\Leftrightarrow5^x=5\Leftrightarrow x=1\)
2) \(2^x+2^{x+4}=544\Leftrightarrow2^x\left(1+2^4\right)=544\Leftrightarrow2^x=32\Leftrightarrow x=5\)
3) \(4^{2x+1}+4^{2x}=80\Leftrightarrow4^{2x}\left(4+1\right)=80\Leftrightarrow16^x=16\Leftrightarrow x=1\)
4) \(3^{2x+2}+3^{2x+1}=108\Leftrightarrow3^{2x}\left(3^2+3\right)=108\Leftrightarrow9^x=9\Leftrightarrow x=1\)
5) \(7^{x+3}-7^{x+1}=16464\Leftrightarrow7^x\left(7^3-7\right)=16464\Leftrightarrow7^x=49\Leftrightarrow x=2\)
\(2x+\frac{1}{2}=\frac{-5}{3}\)
\(2x=\frac{-5}{3}-\frac{1}{2}\)
\(2x=\frac{-10}{6}-\frac{3}{6}\)
\(2x=\frac{-13}{6}\)
\(x=\frac{-13}{6}:2\)
\(x=\frac{-13}{12}\)
\(\left|2x+\frac{4}{3}\right|=\frac{2}{3}\)
\(\Rightarrow\orbr{\begin{cases}2x+\frac{4}{3}=\frac{2}{3}\\2x+\frac{4}{3}=\frac{-2}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=\frac{2}{3}-\frac{4}{3}=\frac{-2}{3}\\2x=\frac{-2}{3}-\frac{4}{3}=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=-1\end{cases}}\)