Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(3y-2\right)+\left(3y-2\right)=-55\)
\(\left(3y-2\right)\left(2x+1\right)=-55=1.\left(-55\right)=\left(-1\right).55=\left(-5\right).11=5.\left(-11\right)\)
3y - 2 | 1 | -1 | -5 | 5 |
y | 1 | 1/3 (L) | -1 | 7/3 (L) |
2x + 1 | -55 | 55 | 11 | -11 |
x | -28 | 27 | 5 | -6 |
Vậy \(\left(y,x\right)=\left\{\left(1;-28\right),\left(-1;5\right)\right\}\)
Lời giải:
$2x-xy+3y=9$
$\Rightarrow x(2-y)+3y=9$
$\Rightarrow x(2-y)-3(2-y)=3$
$\Rightarrow (2-y)(x-3)=3$
Do $x,y$ là số nguyên nên $2-y, x-3$ cũng là số nguyên. Mà tích của chúng bằng 3 nên ta có các TH sau:
TH1: $2-y=1, x-3=3\Rightarrow y=1, x=6$ (tm)
TH2: $2-y=-1, x-3=-3\Rightarrow y=3; x=0$ (loại do $x$ nguyên dương)
TH3: $2-y=3, x-3=1\Rightarrow y=-1$ (loại do $y$ nguyên dương)
TH4: $2-y=-3; x-3=-1\Rightarrow y=5; x=2$ (thỏa mãn)
xy−2x−3y=5
⇔xy−3y−2x=5
⇔y(x−3)−2x+6=11
⇔y(x−3)−(2x−6)=11
⇔y(x−3)−2(x−3)=11
⇔(y−2)(x−3)=11
⇔y−2 và x−3∈Ư(11)={±1;±11}
Ta có bảng sau :
x−3 | −11 | −1 | 1 | 11 |
y−2 | −1 | −11 | 11 | 1 |
x | −8 | 2 | 4 | 14 |
y | 1 | −9 | 13 | 3 |
Vậy có 4 cặp số nguyên x , y thỏa mãn (−8;1);(2;−9);(4;13);(14;3)
HT
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương
=> ĐPCM
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương
=> ĐPCM
Tìm các cặp số nguyên x , y thỏa mãn
a ) ( x - 3 ) x ( 2y + 1 ) = 7
b ) ( 2x + 1 ) x ( 3y - 2 ) = -55
a) (x - 3) (2y + 1) = 7
=> x - 3 = 7 => x = 10
2y + 1 = 7 => 2y = 6 => y = 3
vậy cặp số (x;y) thỏa mãn là (10;3)
b) (2x + 1) (3y - 2) = -55
=> 2x + 1 = -55 => 2x = -56 => x = -28
3y - 2 = -55 => 3y = -53 => y = -49/3
vậy cặp số (x;y) thỏa mãn là (-28;-49/3)
đúng thì t i c k nhé!! 5675675686797697807584735747566876769
a)(x-3)(2y+1)=7
=>x-3 và 2y+1 thuộc Ư(7)={-7;-1;1;7}
Thử lần lượt ta có các cặp (x;y)=(2;-3);(-4;-1);(4;3);(10;0)
b)(2x+1)(3y-2)=-55
=>2x+1 và 3y-2 thuộc Ư(-55)={-55;-11;-5;-1;1;5;11;55}
Thử lần lượt ta có các cặp (x;y)=(0;19);(27;1);(-3;3);(-6;-1)
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chính phương
=> ĐPCM
Giải:
a) \(\left(x-1\right)\left(y+2\right)=7\)
\(\Rightarrow\left(x-1\right)\) và \(\left(y+2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
x-1 | -7 | -1 | 1 | 7 |
y+2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | -3 | -9 | 5 | -1 |
Vậy \(\left(x;y\right)=\left\{\left(-6;-3\right);\left(0;-9\right);\left(2;5\right);\left(8;-1\right)\right\}\)
b) \(\left(x-2\right)\left(3y+1\right)=17\)
\(\Rightarrow\left(x-2\right)\) và \(\left(3y+1\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng giá trị:
x-2 | -17 | -1 | 1 | 17 |
3y+1 | -1 | -17 | 17 | 1 |
x | -15 | 1 | 3 | 19 |
y | \(\dfrac{-2}{3}\) (loại) | -6 (t/m) | \(\dfrac{16}{3}\) (loại) | 0 (t/m) |
Vậy \(\left(x;y\right)=\left\{\left(1;-6\right);\left(19;0\right)\right\}\)
Ko ghi lại đề nhé
a) \(TH1\left[{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
\(TH2:\left[{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\)
\(TH3:\left[{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)
\(TH4:\left[{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)
b) \(TH1:\left[{}\begin{matrix}x-2=1\\3y+1=17\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\y=\dfrac{16}{3}\end{matrix}\right.=>Loại\)
\(TH2:\left[{}\begin{matrix}x-2=-1\\3y+1=-17\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-6\end{matrix}\right.Chọn\)
\(TH3:\left[{}\begin{matrix}x-2=17\\3y+1=1\end{matrix}\right.=>\left[{}\begin{matrix}x=19\\y=0\end{matrix}\right.=>Chọn\)
\(TH4:\left[{}\begin{matrix}x-2=-17\\3y+1=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-15\\y=\dfrac{-2}{3}\end{matrix}\right.=>Loại\)
Bạn tự kết luận hộ mk nha
2x(3y-2) + 3y = -53
=> 2x(3y - 2) + (3y - 2) = - 55
=> (2x +1)(3y - 2) = - 55
Ta có : - 55 = (-11).5 = (-5).11 = (-1).55 = (-55).1
Lập bảng xét 8 trường hợp
2x + 1
Vậy các cặp số (x;y) nguyên thỏa mãn là : (- 26 ; 1) ; (5 ; - 1) ; (4 ; - 3)