\(|2x+3|+|2x-1|=\frac{8}{2\left(y-5\right)^2+2}\)

Tìm x, y \(\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Áp dụng BĐT giá trị tuyệt đối ta có:

\(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)                           (1)       

Mặt khác:\(\left(y-5\right)^2\ge0\Rightarrow2\left(y-5\right)^2\ge0\Rightarrow2\left(y-5\right)^2+2\ge2\)

\(\Rightarrow\frac{8}{2\left(y-5\right)^2+2}\le\frac{8}{2}=4\)                                                            (2)

Từ (1) và (2) \(\Rightarrow\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\) khi \(\hept{\begin{cases}y=5\\\left(2x+3\right)\left(1-2x\right)\ge0\end{cases}}\)

Với \(\hept{\begin{cases}2x+3\ge0\\1-2x\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-\frac{3}{2}\\x\le\frac{1}{2}\end{cases}}\)\(\Rightarrow-\frac{3}{2}\le x\le\frac{1}{2}\)

Với \(\hept{\begin{cases}2x+3\le0\\1-2x\le0\end{cases}}\)  \(\Rightarrow\hept{\begin{cases}x\le-\frac{3}{2}\\x\ge\frac{1}{2}\end{cases}}\)(loại)

Vậy \(\frac{-3}{2}\le x\le\frac{1}{2};y=5\) thỏa mãn

19 tháng 3 2018

Giải dùm mk câu này vs

\(3|2x+1|+4|2y-1|\le7\). Tìm x, y

21 tháng 11 2019

a

\(\left(x-1\right)^{2012}\ge0;\left(y-2\right)^{2010}\ge0;\left(x-z\right)^{2008}\ge0\)

\(\Rightarrow VT\ge0\)

Dấu "=" xảy ra tại \(x=z=1;y=2\)

b

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có:

\(x^2+y^2+z^2=116\)

\(\Leftrightarrow4k^2+9k^2+16k^2=116\)

\(\Leftrightarrow k^2=4\Rightarrow k=2;k=-2\)

Thế ngược lên trên,àm nốt

c

\(\left||x-2|-3\right|=4\)

\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|-3=4\\\left|x-2\right|-3=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|=1\\\left|x-2\right|=-1\left(voli\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

d

\(xy+2x-y=5\)

\(\Leftrightarrow x\left(y+2\right)-\left(y+2\right)=3\)

\(\Leftrightarrow\left(y+2\right)\left(x-1\right)=3=1\cdot3=3\cdot1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)

Lập bảng làm nốt

đ

Lập bảng xét dâu ik ( trong NCPT toán 7 tập 2 có ) hoặc chia khoảng nếu ko bt bảng xét dấu như thế này,dù hơi dài:v

\(\left|x-2\right|=x-2\Leftrightarrow x-2\ge0\Leftrightarrow x\ge2\)

\(\left|x-2\right|=2-x\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)

\(\left|3-2x\right|=3-2x\Leftrightarrow3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow x\le\frac{3}{2}\)

\(\left|3-2x\right|=2x-3\Leftrightarrow3-2x< 0\Leftrightarrow......\Leftrightarrow x>\frac{3}{2}\)

Chia khoảng đi nha !

P/S:Ê trả ơn bằng cách coi bài kiểm tra sử nha !

10 tháng 7 2019

a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)

\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)

b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)

c Tương tự b

2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)

\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)

Xét ước

26 tháng 9 2016

Các bạn ơi giúp minh đi chiêu mai mình học rồi khocroikhocroi

Cảm ơn các bạn rất nhiều 

18 tháng 8 2019

\(a,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^2\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\left(2-x\right)=0\end{cases}}}\)

=> x=1 ; x=0 ; x=2

Vậy..

18 tháng 8 2019

Bài 1 : 

b) \(\left|x-3\right|=5\)

\(\Rightarrow\orbr{\begin{cases}x-3=-5\\x-3=5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

Vậy x thuộc {-2; 8}

c) \(\left|2x+1\right|=x-8\)

\(\Rightarrow\orbr{\begin{cases}2x+1=-x+8\\2x+1=x-8\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x=7\\x=-9\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-9\end{cases}}\)

Vậy x thuộc {-9; 7/3}

Câu c) tớ không chắc, thông cảm.

=))

26 tháng 4 2018

Câu b) tạm thời ko bít làm =.= 

Bài 1 : 

\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)

\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)

\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)

\(\Leftrightarrow\)\(2^{12}=2x\)

\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)

\(\Leftrightarrow\)\(x=2^{11}\)

\(\Leftrightarrow\)\(x=2048\)

Vậy \(x=2048\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

Bài 1 : 

\(a)\) Ta có : 

\(4+\frac{x}{7+y}=\frac{4}{7}\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)

\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)

Do đó : 

\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)

\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)

Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)

Chúc bạn học tốt ~ 

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)