K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

2x3 - 32x = 0

=> 2x.(x2 - 16) = 0

=> 2x = 0 hoặc x2 - 16 = 0

=> x = 0 hoặc x2 = 16

=> x = 0 hoặc x thuộc {4 ; -4}

Vậy x thuộc {0 ; 4 ; -4}

21 tháng 7 2016

2x3-32x=0

2x(x2-16)=0

2x=0 hoặc x2-16=0

x=0 hoặc x2=16

x=0 hoặc x=-4 hoặc x=4

7 tháng 8 2021

bạn ơi có câu c không bạn

 

2 tháng 3 2022

a. \(x^2-25-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5\right)-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b. \(\left(3x+1\right)^2=\left(2x-5\right)\\ \Leftrightarrow9x^2+6x+1=2x-5\\ \Leftrightarrow9x^2+6x-2x=-5-1\\ \Leftrightarrow9x^2+4x=-6\\ \Leftrightarrow x\left(9x+4\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\9x+4=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-\dfrac{10}{9}\end{matrix}\right.\)

c. \(2x^2-7x+6=0\\ \Leftrightarrow2x^2-7x=-6\\ \Leftrightarrow x\left(2x-7\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\dfrac{1}{2}\end{matrix}\right.\)

2 tháng 3 2022

a, \(\left(x-5\right)\left(x+5\right)-3\left(x-5\right)=0\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\Leftrightarrow x=-2;x=5\)

b, bạn ktra lại đề, thường thường ngta hay cho 2 vế cùng bình phương 

c, \(2x^2-7x+6=0\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\Leftrightarrow x=\dfrac{3}{2};x=2\)

15 tháng 9 2021

a. (2x + 1)2 - 4x2 + 2x2 - 2 = 0

<=> (2x + 1 - 2x)(2x + 1 + 2x) + 2(x2 - 1) = 0

<=> (4x + 1) + 2x2 - 2 = 0

<=> 4x + 1 + 2x2 - 2 = 0

<=> 2x2 + 4x - 2 + 1 = 0

<=> 2x2 + 4x - 1 = 0

<=> 2x2 + 4x = 1

<=> 2x(x + 2) = 1

Vì 1 chỉ có tích là 1 . 1 nên:

<=> \(\left[{}\begin{matrix}2x=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

15 tháng 9 2021

\(a,\Leftrightarrow4x^2+4x+1-4x^2+2x^2-2=0\\ \Leftrightarrow2x^2+4x-1=0\\ \Leftrightarrow2\left(x^2+2x+1\right)-3=0\\ \Leftrightarrow2\left(x+1\right)^2-3=0\\ \Leftrightarrow\left(x+1\right)^2=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{\dfrac{3}{2}}\\x+1=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{6}}{2}\\x=\dfrac{-2+\sqrt{6}}{2}\end{matrix}\right.\)

\(b,\left(x-2\right)\left(x+2\right)-\left(x+3\right)^2-2x-5=0\\ \Leftrightarrow x^2-4-x^2-6x-9-2x-5=0\\ \Leftrightarrow-8x=18\\ \Leftrightarrow x=-\dfrac{9}{4}\)

20 tháng 4 2022

a,\(x\in\left\{5;1,5;\dfrac{-4}{3}\right\}\)

1: Ta có: \(\left(3-x\right)^2+\left(2x+1\right)^2-\left(2-x\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-2\right)=0\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

2: Ta có: \(\left(1-2x\right)^2-3\left(x-1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow4x^2-4x+1-3x^2+6x-3+\left(x+1\right)^2-2\left(x-1\right)^2=0\)

\(\Leftrightarrow x^2+2x-2+x^2+2x+1-2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2x^2+4x+1-2x^2+4x-2=0\)

\(\Leftrightarrow x=\dfrac{1}{8}\)

18 tháng 6 2021

\(\left(x^2-9\right)^2-9\left(x-3\right)^2=0\)

\(< =>\left(x^2-9\right)^2-\left[3\left(x-3\right)\right]^2=0\)

\(< =>\left(x^2-9\right)^2-\left(3x-9\right)^2=0\)

\(< =>\left(x^2-9+3x-9\right)\left(x^2-9-3x+9\right)=0\)

\(< =>\left(x^2+3x-18\right)\left(x^2-3x\right)=0\)

\(=>\left[{}\begin{matrix}x^2+3x-18=0\\x^2-3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}\left(x+6\right)\left(x-3\right)=0\\x\left(x-3\right)=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=-6\\x=3\\x=0\end{matrix}\right.\)

 

18 tháng 6 2021

Nhanh đấy tốc độ đấy =))

13 tháng 11 2021

\(a,\Leftrightarrow x^2-2x-x^2+5x=6\\ \Leftrightarrow3x=6\\ \Leftrightarrow x=2\)

\(b,\Leftrightarrow x^2-6x+9-x+9=0\\ \Leftrightarrow x^2-7x+18=0\\ \Leftrightarrow\left(x^2-7x+\dfrac{49}{4}\right)+\dfrac{23}{4}=0\\ \Leftrightarrow\left(x-\dfrac{7}{2}\right)^2+\dfrac{23}{4}=0\left(vôlí\right)\)

26 tháng 11 2021

\(A=x^3-2x+n\)

\(B=n-2\)

\(A\text{⋮}B\) ⇒ \(\left(x^3-2x+n\right)\text{⋮}\left(n-2\right)\)

⇒ \(\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)

⇒ \(\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)

⇒ \(\left[\left(x-2\right)\left(x^2+2x+2\right)+\left(n+4\right)\right]\text{⋮}\left(x-2\right)\)

Vì \(\left(x-2\right)\left(x^2+2x+2\right)\text{⋮}\left(n-2\right)\)

Để \(A\text{⋮}B\)

⇒ \(n+4=0\)

⇒ \(n=-4\)

Ta có: \(\left(1-x\right)^2+\left(x-x^2\right)+3=0\)

\(\Leftrightarrow x^2-2x+1+x-x^2+3=0\)

\(\Leftrightarrow4-x=0\)

hay x=4

Vậy: S={4}

21 tháng 3 2021

$⇔x^2-2x+1+x-x^2+3=0$

$⇔-x=-4$

$⇔x=4$

Vậy phương trình đã cho có tập nghiệm S={4}