Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
x = -3
Mk ms lp 6 à. Nên còn cách nào nx hay ko thì chịu
Băng'ss Băng'ss
\(|x+1|=|2x+3|\)
\(\Rightarrow\left(x+1\right)^2=\left(2x+3\right)^2\)
\(\Rightarrow x^2+2x+1=4x^2+12x+9\)
\(\Rightarrow3x^2+10x+8=0\)
Giải phương trình bậc 2 ....
a A=4x-x^2+3
=(x-2)^2-1
MIN A= -1 khi (x-2)^2=0
x-2=0
x=2
B=x-x^2
B=-x^2+x
-B=x^2-x
-B=(x-1/2)^2-1/4
B=-(x-1/2)^2+1/4
MAX B=1/4 khi -(x-1/2)^2=0
x-1/2=0
x=1/2
N=2x-2x^2-5
-N=2x^2-2x+5
-N=2(x^2-x+2)+1
-N=2{(x-1/2)^2+7/4}+1
-N=2(x-1/2)^2+7/2+1
-N=2(x-1/2)^2+9/2
N=-2(x-1/2)^2-9/2
MAX N=-9/2 khi -2(x-1/2)^2=0
x-1/2=0
x=1/2
( 2x - 1 ) - x = 0
=> 2x - 1 = x
=> 2x - x = 1
=> x = 1
( x - 1 )( 2x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=\frac{3}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là S = { 1 ; 3/2 }
\(\frac{x}{x+1}=\frac{x+2}{x-1}\)( đkxđ : \(x\ne\pm1\))
( Chỗ này chưa học kĩ nên chưa hiểu lắm :]
\(\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)
\(=\frac{2x}{x\left(x-3\right)}+\frac{2x}{x^2-3x-x+3}+\frac{x}{x-1}\)
\(=\frac{2}{x-3}+\frac{2x}{x\left(x-3\right)-\left(x-3\right)}+\frac{x}{x-1}\)
\(=\frac{2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{2x}{\left(x-3\right)\left(x-1\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}\)
\(=\frac{2x-2+2x+x^2-3x}{\left(x-3\right)\left(x-1\right)}\)
\(=\frac{x^2+x-2}{\left(x-3\right)\left(x-1\right)}=\frac{x^2-x+2x-2}{\left(x-3\right)\left(x-1\right)}=\frac{x\left(x-1\right)+2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=\frac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(x-1\right)}=\frac{x+2}{x-3}\)
a) \(3x^2-2x=0\)
Phương trình này xác định với mọi x
b)\(\frac{1}{x-1}=3\)
pt xác định \(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)
c) \(\frac{2}{x-1}=\frac{x}{2x-4}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\2x-4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne2\end{cases}}\)
d) \(\frac{2x}{x^2-9}=\frac{1}{x+3}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x^2-9\ne0\\x+3\ne0\end{cases}}\Leftrightarrow x\ne\pm3\)
e) \(2x=\frac{1}{x^2-2x+1}\)
pt xác định\(\Leftrightarrow x^2-2x+1\ne0\Leftrightarrow\left(x-1\right)^2\ne0\)
\(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)
f) \(\frac{1}{x-2}=\frac{2x}{x^2-5x+6}\)
\(\Leftrightarrow\frac{1}{x-2}=\frac{2x}{\left(x-3\right)\left(x-2\right)}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x-3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
(3x-1)2-5(2x+1)2+(6x-3)(2x+1)=(x-1)2
<=> (3x-1)2+2(3x-1)(2x+1)+(2x+1)2-6(2x+1)2=(x-1)2
<=> (5x)2-6(4x2+4x+1)-(x2-2x+1)=0
<=> -22x-7=0
=> x=-7/22
\(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow9x^2-6x+1+\left(2x+1\right)\left[-5\left(2x+1\right)+6x-3\right]=x^2-1\)
\(\Leftrightarrow9x^2-6x+1+\left(2x+1\right)\left[-10x-5+6x-3\right]=x^2-1\)
\(\Leftrightarrow9x^2-6x+1+\left(2x+1\right)\left[-4x-8\right]=x^2-1\)
\(\Leftrightarrow9x^2-6x+1-4x\left(2x+1\right)-8\left(2x+1\right)=x^2-1\)
\(\Leftrightarrow9x^2-6x+1-8x^2-4x-16x-8=x^2-1\)
\(\Leftrightarrow\left(9x^2-8x^2-x^2\right)-\left(4x+6x+16x\right)+\left(1-8\right)=-1\)
\(\Leftrightarrow0-26x-7=-1\)
\(\Leftrightarrow-26x=-1+7\)
\(\Leftrightarrow-26x=6\)
\(\Leftrightarrow x=\frac{-3}{13}\)
-2x(3-2x)
=(-2x.3) (-2x.-2x)
= -6x + 4x2
em hoc lop 6 em ko giai dc
mong chi thong cam