Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 *x *x - x*y- 3 *y = 3*x
2 *x*x-(x-3)*y=3*x
em hết biết giải rồi chị ơi vì em học lớp 5
Ta có \(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)
\(\Rightarrow x=3.\left(-5\right)=-15;y=\left(-5\right).5=-25\)
Vậy x = -15 ; y = -25
a) \(\hept{\begin{cases}2x=5y=8z\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}\\x-2y-3z=0,5\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}=\frac{x-2y-3z}{\frac{1}{2}-\frac{2}{5}-\frac{3}{8}}=\frac{0,5}{-\frac{11}{40}}=\frac{-20}{11}\)
=> x = -10/11 ; y = -4/11 ; z = -5/22
b) \(\hept{\begin{cases}0,2a=0,3b=0,4c\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{5}=\frac{b}{\frac{10}{3}}=\frac{c}{\frac{5}{2}}\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}\\2a+3b-5c=-1,8\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}=\frac{2a+3b-5c}{10+10-\frac{25}{2}}=\frac{-1,8}{\frac{15}{2}}=-\frac{6}{25}\)
=> a = -6/5 ; b = -4/5 ; c = -3/5
c) \(\hept{\begin{cases}a=\frac{3}{4}b=\frac{5}{6}c\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}=\frac{2b-a-c}{\frac{8}{3}-1-\frac{6}{5}}=\frac{-39}{\frac{7}{15}}=\frac{-585}{7}\)
=> a = -585/7 ; b = -780/7 ; c = -702/7
a) Ta có :\(\hept{\begin{cases}2x=5y\\3y=8z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{3z}{9}=\frac{x-2y-3z}{20-16-9}=\frac{0,5}{-5}=-0,1\)
=> x = -2 ; y = -0,8 ; z = -0,3
b) Ta có : \(0,2a=0,3b=0,4c\Rightarrow0,2a.\frac{1}{12}=0,3b.\frac{1}{12}=0,4c.\frac{1}{12}\)
=> \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}\Rightarrow\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}=\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}=\frac{2a+3b-5c}{120+120-150}=\frac{-1,8}{90}=-0,02\)
=> a = -1,2 ; b = -0,8 ; c = -0,6
c) \(\frac{2}{3}a=\frac{3}{4}b=\frac{5}{6}c\)
=> \(\frac{2}{3}a.\frac{1}{30}=\frac{3}{4}b.\frac{1}{30}=\frac{5}{6}c.\frac{1}{30}\Rightarrow\frac{a}{45}=\frac{b}{40}=\frac{c}{36}\Rightarrow\frac{a}{45}=\frac{2b}{80}=\frac{c}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{45}=\frac{b}{40}=\frac{c}{36}=\frac{2b}{80}=\frac{2b-a-c}{80-45-36}=\frac{-39}{-1}=39\)
=> a = 1755 ; b = 1560 ; c = 1404
\(A=-\left(x^2-2x+1\right)-2\)
\(A=-\left(x-1\right)^2-2\)
Vì \(-\left(x-1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-1\right)^2-2\le0-2;\forall x\)
Hay \(A\le-2;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy MAX A=-2 \(\Leftrightarrow x=1\)
\(C=-2x^2+2xy-y^2+2x+4\)
\(C=-x^2+2xy-y^2-x^2+2x-1+5\)
\(C=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)+5\)
\(C=-\left(x-y\right)^2-\left(x-1\right)^2+5\le5\)
Dấu = xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=1\end{cases}}\Leftrightarrow x=y=1\)
Vậy C max = 5 tại x = y = 1
a, xét tam giác ABE và tam giác ADE có : AE chung
AB = AD (Gt)
^DAE = ^BAE do AE là pg của ^BAC (gt)
=> tam giác ABE = tam giác ADE (c-g-c)
b, AB = AD (gt)
=> tam giác ABD cân tại A (đn)
c, đề sai
\(Q=2^3+4^3+...+20^3\)
\(Q=1^3.2^3+2^3.2^3+3^3.2^3+...+10^3.2^3\)
\(Q=\left(1^3+2^3+3^3+...+10^3\right).2^3\)
\(Q=3025.8\)
\(Q=24224\)
Gọi tuổi bố hiện nay là x, tuổi mẹ hiện nay là y, tuổi con hiện nay là z,
Theo đề bài, ta có:
\(y=\frac{7}{8}x\)(1) ; \(y=3z\)(2) ; \(\frac{z-8}{y-8}=\frac{3}{17}\)(3);
Từ (3) suy ra: \(17\left(z-8\right)=3\left(y-8\right)\)
\(\Leftrightarrow\) \(17z-136=3y-24\)
\(\Leftrightarrow\) \(17z=3y+112\)(4);
Thay (2) vào (4), ta được:
17z = 3.(3z)+112
\(\Rightarrow\)17z=9z+112
\(\Rightarrow\)8z=112
\(\Rightarrow\)z=14
Vậy tuổi mẹ là: y=3z=14.3=42 (tuổi)
tuổi bố là: \(x=y:\frac{7}{8}=y.\frac{8}{7}=42.\frac{8}{7}=48\)(tuổi)
\(\left|2x+3\right|+2x=-4\)
\(\Leftrightarrow\left|2x+3\right|=-4-2x\)(1)
*Nếu \(x\ge\frac{-3}{2}\)thì \(2x+3\ge0\Rightarrow\left|2x+3\right|=2x+3\)
\(\Rightarrow\left(1\right)\Leftrightarrow2x+3=-4-2x\Leftrightarrow4x=-7\Leftrightarrow x=\frac{-7}{4}\left(L\right)\)
*Nếu \(x< \frac{-3}{2}\)thì \(2x+3< 0\Rightarrow\left|2x+3\right|=-2x-3\)
\(\Rightarrow\left(1\right)\Leftrightarrow-2x-3=-4-2x\Leftrightarrow0=-1\left(L\right)\)
Vậy pt vô nghiệm
\(\left|2x+3\right|+2x=-4\)
\(\Leftrightarrow\left|2x+3\right|=-4-2x\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=-4-2x\\2x+3=-\left(-4-2x\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+2x=-4-3\\2x+3=4+2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=-7\\2x-2x=4-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{4}\\0=1\left(loại\right)\end{cases}}\)
Vậy : \(x=-\frac{7}{4}\)