Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)
\(\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-2^3\)
\(\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Leftrightarrow2^x=2^3\)
\(\Leftrightarrow x=3\)
Vậy x = 3
2 x + 2x+1+ 2 x+2+.......+ 2x+2015=22019-8
=2x.( 1+2+22+23+.....+ 2 2015)=22019- 23
đặt A= 1+2+22+...+22015
=>2A=2+22+23+..+22016
=>2A -A = ( 2+ 22+23+......+22016)-(1+2+22+........+22015)=A=22016-1
\(\Rightarrow\)2x.(22016-1)=23.(22016-1)
=>x=3
Lời giải:
$A=2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}$
$2A=2^{x+1}+2^{x+2}+....+2^{x+2016}$
$2A-A=2^{x+2016}-2^x$
$A=2^{x+2016}-2^x=2^x(2^{2016}-1)$
Vậy:
$2^x(2^{2016}-1)=2^{2019}-8=2^{2019}-2^3=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
Theo đầu bài ta có:
\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)
\(\Rightarrow2\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)-\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)=2^{2019}-8\)
\(\Rightarrow\left(2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2016}\right)-\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)=2^{2019}-8\)
\(\Rightarrow2^{x+2016}-2^x=2^{2019}-8\)
\(\Rightarrow2^x\cdot2^{2016}-2^x=2^3\cdot2^{2016}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)
a) \(\Rightarrow2^x.1+2^x.2+2^x.3+...+2^x.2015=2^{2019}-2^3\)
\(\Rightarrow2^x.\left(1+2+2^2+2^3+...+2^{2015}\right)=2^3.\left(2^{2016}-1\right)\)
Đặt \(A=1+2+2^2+2^3+...+2^{2015}\)
\(\Rightarrow2.A=2+2^2+2^3+...+2^{2016}\)
\(\Rightarrow A=2^{2016}-1\)
\(\Rightarrow2^x.\left(2^{2016}-1\right)=2^3.\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
Vậy x=3
Ta có :
a) \(1+3+5+...+\left(2x-1\right)=\frac{\left(2x-1\right)+1}{2}\left(\frac{\left(2x-1\right)-1}{2}+1\right)=x^2\)
\(\Leftrightarrow x^2=225\Rightarrow x=15\)
b) \(2^x+2^{x+1}+...+2^{x+2015}=2^x\left(2^0+2^1+...+2^{2015}\right)\)
Đặt A = 20 + 21 + ... + 22015 . Ta có :
2A = 21 + 22 + ... + 22016
⇒ A = 2A - A = (21 +22 +...+22016 )-(20 + 21 + ... +22015 )
⇒ A = 22016 - 1
⇔ 2x.A = 22019 - 8
⇔ 2x( 22016 - 1 ) = 23 ( 22016 - 1 )
⇔ x = 3
Đề bài c) chưa đủ ý nên o làm đc
\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)
\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)
\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
\(2^x+2^{x+1}+2^{x+2}+2^{x+2015}=2^{2019}-8\left(1\right)\)
Đặt \(S=2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\left(1+2^2+...2^{x-1}\right)=\left(1+2^2+...2^{x-1}\right)+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\dfrac{2^{x-1+1}-1}{2-1}=1+2^2+...2^{x-1}+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+2^x-1=\dfrac{2^{x+2015+1}-1}{2-1}\)
\(\Rightarrow S+2^x-1=2^{x+2016}-1\)
\(\Rightarrow S=2^{x+2016}-2^x\)
\(\left(1\right)\Rightarrow2^{x+2016}-2^x=2^{2019}-8=2^{2019}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)