Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
b) Ta có: \(x^2-x=-2x^2+2x\)
\(\Leftrightarrow3x^2-3x=0\)
\(\Leftrightarrow3x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
c) Ta có: \(2x^2\left(x-1\right)+x^2=x\)
\(\Leftrightarrow2x^2\left(x-1\right)+x^2-x=0\)
\(\Leftrightarrow2x^2\left(x-1\right)+x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\cdot\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{-1}{2}\end{matrix}\right.\)
d) Ta có: \(\left(x-2\right)\left(x^2+4\right)=x^2-2x\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4\right)-x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-x+4\right)=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
\(a,=\left[x^2\left(x^2-x-1\right)+x^3+x^2-3x-1\right]:\left(x^2-x-1\right)\\ =\left[x^2\left(x^2-x-1\right)+x\left(x^2-x-1\right)+2x^2-2x-1\right]\\ =\left[x^2\left(x^2-x-1\right)+x\left(x^2-x-1\right)+2\left(x^2-x-1\right)+1\right]:\left(x^2-x-1\right)\\ =\left[\left(x^2+x+2\right)\left(x^2-x-1\right)+1\right]:\left(x^2-x-1\right)=x^2+x+2R1\)
a) Ta có: \(\left(x^2-2x\right)^2-6x^2+12x+9=0\)
\(\Leftrightarrow\left(x^2-2x\right)^2-6\left(x^2-2x\right)+9=0\)
\(\Leftrightarrow\left(x^2-2x-3\right)^2=0\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: S={3;-1}
b) Ta có: \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+5\left(x^2+x\right)-2\left(x^2+x\right)-10=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+5\right)-2\left(x^2+x+5\right)=0\)
\(\Leftrightarrow\left(x^2+x+5\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow x^2+x-2=0\)(Vì \(x^2+x+5>0\forall x\))
\(\Leftrightarrow x^2+2x-x-2=0\)
\(\Leftrightarrow x\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy: S={-2;1}
2 ý a và b anh CTV nãy đã làm rồi nha, còn câu c này thì làm dài dòng+không chắc :VVV
c)\(\left(2x^2-3x+1\right)\left(2x^2+5x+1\right)-9x^2=0\)
\(\Leftrightarrow\left(2x^2-3x+1\right)\left(2x^2-3x+1+8x\right)-9x^2=0\)
\(\Leftrightarrow\left(2x^2-3x+1\right)^2+8x\left(2x^2-3x+1\right)+16x^2-25x^2=0\)
\(\Leftrightarrow\left(2x^2-3x+1+4x\right)^2-25x^2=0\)
\(\Leftrightarrow\left(2x^2+x+1\right)^2-25x^2=0\)
\(\Leftrightarrow\left(2x^2+x+1-5x\right)\left(2x^2+x+1+5x\right)=0\)
\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x^2-4x+1\right)=0\\\left(2x^2+6x+1\right)=0\end{matrix}\right.\)
Rồi đến đây tự giải nhé, không phân tích được thì bấm máy tính là ra nha:vv
a) `(x^3-x^2)/(x^3-2x^2+x)`
`=(x^2(x-1))/(x(x-1)(x-1))`
`=x/(x-1)`
`=>` 2 phân thức bằng nhau.
b) `(x^2+2x+1)/(2x^2-2)`
`=((x+1)(x+1))/(2(x+1)(x-1))`
`=(x+1)/(2(x-1))`
`=(x+1)/(2x-2)`
`=>` 2 phân thức bằng nhau
a) Ta có: \(\dfrac{x^3-x^2}{x^3-2x^2+x}\)
\(=\dfrac{x^2\left(x-1\right)}{x\left(x^2-2x+1\right)}\)
\(=\dfrac{x\cdot\left(x-1\right)}{\left(x-1\right)^2}=\dfrac{x}{x-1}\)
b) Ta có: \(\dfrac{x^2+2x+1}{2x^2-2}\)
\(=\dfrac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x+1}{2x-2}\)
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^4-10x^3+6x^2\)
c: \(=-x^5+2x^3-\dfrac{3}{2}x^2\)
d: \(=2x^3+10x^2-8x-x^2-5x+4=2x^3+9x^2-13x+4\)
\(a,\frac{x+1}{x-2}-\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x^2+4}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x^2+2x+x+2-\left(x^2-2x-x+2\right)=2x^2+4\)
\(\Leftrightarrow x^2+3x+2-x^2+2x+x-2=2x^2+4\)
\(\Leftrightarrow6x=2x^2+4\)
\(\Leftrightarrow2x^2+4-6x=0\)
\(\Leftrightarrow2x^2+4-6x=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
\(b,\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)=5\left(x-1\right)\left(x-1\right)\)
\(\Leftrightarrow2x^2+2x+x+1=5\left(x^2-2x+1\right)\)
\(\Leftrightarrow2x^2+3x+1=5x^2-10x+5\)
\(\Leftrightarrow5x^2-2x^2-10x-3x+5-1=0\)
\(\Leftrightarrow3x^2-13x+4=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-\frac{1}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{1}{3}\end{cases}}}\)
Giup mk vs