Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\sqrt{2}x\right)^2+2\cdot\sqrt{2}x\cdot\frac{\sqrt{2}}{4}+\frac{1}{8}+\frac{7}{8}\)
\(=\left(\sqrt{2}x+\frac{\sqrt{2}}{4}\right)^2+\frac{7}{8}\)
vì \(\left(\sqrt{2}x+\frac{\sqrt{2}}{4}\right)^2>=0\)=> \(2x^2+x+1>=\frac{7}{8}\)
=> min = \(\frac{7}{8}\)
a) 2x-mx+2m-1=0
\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)
*Nếu \(m=2\)thay vào (1) ta được:
\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)
Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.
*Nếu \(m\ne2\)thì phương trình (1) có nghiệm \(x=\frac{1-2m}{2-m}\)
Vậy \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)
b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé
b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)
*Nếu \(m\ne2\).....pt có ngiệm x=m+2
*Nếu \(m=2\)....pt có vô số nghiệm
Vậy ....
c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)
Nếu \(m=2\).... pt có vô số nghiệm
Nếu \(m=-2\)..... pt vô nghiệm
Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)
Để nghiệm \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)
Vậy m<-2
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )
\(\Leftrightarrow x=2\)
b) \(2x^3+x^2-6x=0\)
\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)
c) \(4x^2+4xy+x^2-2x+1+y^2=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)
4 . (2x)2 - 72 = 0
=> (2x + 7 ).(2x+7 )= 0
=> th1 : 2x - 7 = 0 => x = 7/2
=> th2 : 2x + 7 = 0 => x = -7/2
5 . x(x -1 ) - 2( 1- x) = 0
=> x(x - 1) + 2 (x- 1 )= 0
=> (x - 2) .(x - 1 )= 0
=> th1 : x-2 = 0 => x=2
th2 : x-1 =0 => x= 1
6. (x-3)2-(x - 3 ) = 0
=> ( x- 3 ) ( x-4 ) = 0
=> th1 : x-3 = 0 => x=3
th2 : x-4= 0 => x =4
7. x3 = x5 => x = 1 . x= -1
ok nhé !!!
1 . x2-2x+1 = 0
=> (x-1)2 = 0 => x-1 = 0 => x = 1
2. x(x-3) -(x-3) = 0
=>(x-1).(x-3)=0
=> th1 : x-1 = 0 => x= 1
=> th2 : x-3=0 => x= 3
3. x2 + 36 = 12x
=> x2 + 36 - 12= 0
=> x2 - 6x -6x + 36 = 0
=> x(x - 6) - 6(x-6) = 0
=> (x-6)2 = 0
=> x = 6
a)\(-3x\left(x+2\right)^2+\left(x+3\right)\left(x-1\right)\left(x+1\right)-\left(2x-3\right)^2\)
\(=-3x.\left(x^2+2.x.2+2^2\right)+\left(x^2+x+3x-3\right).\left(x+1\right)-\left(2x\right)^2-2.2.x.\left(-3\right)+\left(-3\right)^2\)
\(=-3x.\left(x^2+4x+4\right)+\left(x^2+\left(x+3x\right)-3\right).\left(x+1\right)-4x+12x+9\)
\(=-3x.\left(x^2+4x+4\right)+\left(x^2+4x-3\right)\left(x+1\right)-4x+12x+9\)
\(=-3x^3-12x^2-12x+x^3+4x^2-3x+x^2+4x-3-4x+12x+9\)
\(=\left(-3x^3-x^3\right)+\left(-12x^2+4x^2+x^2\right)+\left(-12x-3x+4x-4x+12x\right)+\left(-3+9\right)\)
\(=-2x^3-7x^2-3x+6\)
b)\(\left(x-3\right)\left(x+3\right)\left(x+2\right)-\left(x-1\right)\left(x^2-3\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)
\(=\left(x.\left(x+3\right)-3\left(x+3\right)\right)\left(x+2\right)-\left(x.\left(x^2-3\right)-1\left(x^2-3\right)\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)
\(=\left(x.x+x.3-3.x+\left(-3\right).3\right)\left(x+2\right)-\left(x.x^2+x.\left(-3\right)-1.x^2+\left(-1\right).\left(-3\right)\right)-5x.x+\left(-5x\right).4-x^2-2x5+5^2\)
\(=\left(x^2+3x-3x-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)
\(=\left(x^2+\left(3x-3x\right)-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)
\(=\left(x^2-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)
\(=x^3+2x^2-9x-15-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)
\(=\left(x^3-x^3\right)+\left(2x^2-x^2-5x^2-x^2\right)+\left(-9x-3x-20x-10x\right)+\left(-18+3+25\right)\)
\(=-5x^2-42x+10\)
Có : x^3-x^2+2x-8
= (x^3-2x^2)+(x^2-2x)+(4x-8)
= (x-2).(x^2+x+4)
Tk mk nha
\(2x^2-x-10=0\Leftrightarrow2x^2-5x+4x-10=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-2\end{matrix}\right.\)
Thank you very much!!!