Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(x2+x+1)=0
<=>x2+x+1=0
<=> x2+2.1/2x+1/4+3/4=0
<=>(x+1/2)2+3/4=0
..... bn c/m cái pt trên ko xảy ra là được
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
Lời giải:
$x^2-9=0\Leftrightarrow x=\pm 3$
Để PT vô nghiệm thì:
\(\left\{\begin{matrix}
2.3+m=0\\
2(-3)+m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
m=6\\
m=-6\end{matrix}\right.\) (vô lý, $m$ không thể đồng thời nhận 2 giá trị cùng lúc)
Do đó không tồn tại $m$ để PT vô nghiệm.
\(2x^2-6x+7=0\)
\(\Rightarrow2x^2-6x+\frac{9}{2}+\frac{5}{2}=0\)
\(\Rightarrow2\left(x^2-3x+\frac{9}{4}\right)+\frac{5}{2}=0\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}>0\)( vô nghiệm)
1. x\(^4\)-x\(^3\)+2x\(^2\)-x+1=0
\(\Leftrightarrow\)(x^4-x^3+x^2) +(x^2-x+1)=0
\(\Leftrightarrow\)x^2(x^2-x+1) +(x^2-x+1)=0
\(\Leftrightarrow\)(x^2-x+1)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x^2-x+1/4)+3/4\(]\)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x-1/2)\(^2\)+3/4\(]\)(x^2+1)=0
VÌ (x-1/2)\(^2\)+3/4>0\(\forall\)x
x^2+1>0\(\forall\)x
\(\Rightarrow\)Phương trình đã cho vô nghiệm
1)x^4 - x^3 + 2x^2 - x + 1 = 0
(x^4 + 2x^2 +1) - (x^3+x)= 0
x^4 + 2x^2 + 1 = x^3 - x
(x^2 + 1)^2 = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
x^2+1 = x (vô lí)
==> PT vô nghiệm
a) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)
Vì (x2 -x )2 \(\ge0\)với mọi x
\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x
=> Phương trình trên vô nghiệm - đpcm
b) Ta có
x6+x5+x4+x3+x2+x+1=0
Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :
(x−1)(x6+x5+x4+x3+x2+x+1)=0
⇔x7−1=0
⇔x7=1
⇔x=1
(vô lí)
Điều vô lí chứng tỏ phương trình vô nghiệm.
2x2 - 4x + 9
= (\(\sqrt{2}\)x - \(\sqrt{2}\))2 - 2 + 9
= (\(\sqrt{2}\)x - \(\sqrt{2}\))2 + 7 >= 7
=> Bất phương trình 2x2 - 4x + 9 < 0 vô nghiệm