K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

\(\cdot x^2-4x-5=x^2-5x+x-5=\left(x^2-5x\right)+\left(x-5\right)=x\left(x-5\right)+\left(x-5\right)=\left(x-5\right)\left(x+1\right)\)

6 tháng 11 2019

\(x^2-y^2-2xy+y^2\\=x^2-2xy+y^2-y^2\\ =\left(x-y\right)^2-y^2\\ =\left(x-y-y\right)\left(x-y+y\right) \)

12 tháng 7 2019

a,\(xy+3x-7y-21\)

\(=x\left(y+3\right)-7\left(y+3\right)\)

\(=\left(y+3\right)\left(x-7\right)\)

12 tháng 7 2019

\(b,2xy-15-6x+5y\)

\(=\left(2xy-6x\right)+\left(-15+5y\right)\)

\(=2x\left(y-3\right)-5\left(3-y\right)\)

\(=2x\left(y-3\right)+5\left(y-3\right)\)

\(=\left(y-3\right)\left(2x+5\right)\)

13 tháng 11 2017

3)

\(A=\dfrac{5}{x^2-2x+5}\)

ta có x2-2x+5

=x2-2x+1+4

=(x2-2x+1)+4

=(x-1)2+4

=> A=\(\dfrac{5}{\left(x-1\right)^2+4}\)

do \(\left(x-1\right)^2\ge0\forall x\)

=> \(\left(x-1\right)^2+4\ge4\)

=> \(\dfrac{5}{\left(x-1\right)^2+4}\le\dfrac{5}{4}\)

=> A\(\le\dfrac{5}{4}\)

GTLN của A =\(\dfrac{5}{4}\)

khi x-1=0

=> x=1

vậy GTLN của A=\(\dfrac{5}{4}\) khi x=1

4 tháng 12 2018

a. \(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x+2\right)\left(x-2\right)\)

b. \(x^2-y^2-4x+4=\left(x^2-4x+4\right)-y^2=\left(x-2\right)^2-y^2=\left(x+y-2\right)\left(x-y-2\right)\)

c. \(\left(x^2+9\right)^2-36x^2=\left(x^2+6x+9\right)\left(x^2-6x+9\right)=\left(x+3\right)^2\left(x-3\right)^2\)

d. \(25-x^2+2xy-y^2=25-\left(x-y\right)^2=\left(5+x-y\right)\left(5-x+y\right)\)

còn lại làm tương tự

4 tháng 12 2018

a) \(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

b) \(x^2-y^2-4x+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)

c) \(\left(x^2+9\right)^2-36x^2=\left(x^2+9\right)^2-\left(6x\right)^2=\left(x^2-6x+9\right)\left(x^2+6x+9\right)\)

\(=\left(x-3\right)^2\left(x+3\right)^2\)

d) \(25-x^2+2xy-y^2=5^2-\left(x-y\right)^2=\left(5-x+y\right)\left(5+x-y\right)\)

e) \(x^3-4x^2+4x-1=\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1-4x\right)=\left(x-1\right)\left(x^2-3x+1\right)\)

f) \(3x-3y-x^2+2xy-y^2=3\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3-x+y\right)\)

g) \(2x^2-9x+10=2x^2-4x-5x+10=2x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(2x-5\right)\)

h) \(x^2-5x-14=x^2-7x+2x-14=x\left(x-7\right)+2\left(x-7\right)=\left(x-7\right)\left(x+2\right)\)

i) \(x^3-3x^2+2=x^3-2x^2-x^2+2=x^2\left(x-1\right)-2\left(x^2-1\right)\)

\(=x\left(x-1\right)-2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x-2x-2\right)\)

k) \(x^4+4=\left(x^2\right)^2+2\cdot x^2\cdot2+2^2-2\cdot x^2\cdot2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

a) Ta có: \(-3x^2\left(2x^2-\frac{1}{3}x+2\right)\)

\(=-6x^4+x^3-6x^2\)

b) Ta có: \(2xy^2\left(x-3y+xy\right)\)

\(=2x^2y^2-6xy^3+2x^2y^3\)

c) Ta có: \(\left(5x^2-4x\right)\left(x-2\right)\)

\(=5x^3-10x^2-4x^2+8x\)

\(=5x^3-14x^2+8x\)

d) Ta có: \(-\left(2-x\right)\left(2x+3\right)\)

\(=\left(x-2\right)\left(2x+3\right)\)

\(=2x^2+3x-4x-6\)

\(=2x^2-x-6\)

e) Ta có: \(\left(3x^3-2x^2+x\right):\left(-2x\right)\)

\(=\frac{-3}{2}x^2+x-\frac{1}{2}\)

f) Ta có: \(\left(15x^2y^2-21x^3y+2x^2y\right):\left(3x^2y\right)\)

\(=5y-7x+\frac{2}{3}\)

g) Hỏi đáp Toán

19 tháng 7 2017

đăng nhiều thế, từng câu 1 thôi bạn

19 tháng 7 2017

câu 20

\(\)\(C_{20}=\left(a^2+1\right)^2-4a^2=\left(a^2+1\right)^2-\left(2a\right)^2=\left[\left(a^2+1\right)-2a\right]\left[\left(a^2+1\right)+2a\right]\)\(C_{20}=\left[a^2-2a+1\right]\left[a^2+2a+1\right]=\left(a-1\right)\left(a-1\right)\left(a+1\right)\left(a+1\right)\)

\(C_{20}=\left(a-1\right)\left(a-1\right)\left(a+1\right)\left(a+1\right)\)

1: =(4x-1)^2-3(4x-1)

=(4x-1)(4x-1-3)

=4(x-1)(4x-1)

2: =-8x^4y^5(2y+3x)

3: =(a-5)^2-4b^2

=(a-5-2b)(a-5+2b)

5: =x^2-mx-nx+mn

=x(x-m)-n(x-m)

=(x-m)(x-n)

6: =(4a^2-3a-18-4a^2-3a)(4a^2-3a-18+4a^2+3a)

=(-6a-18)(8a^2-18)

=-6(2a-3)(2x+3)(a+3)

Bài 2. Thực hiện phép nhân: a. 3x(4x - 3) - (2x -1)(6x + 5) b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1) c. (x - 2)(1x + 2)(x + 4) Bài 3. Chứng ming rằng: a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2 c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3 e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4 Bài 4. Tìm x biết: a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12 c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 ...
Đọc tiếp

Bài 2. Thực hiện phép nhân:

a. 3x(4x - 3) - (2x -1)(6x + 5)

b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1)

c. (x - 2)(1x + 2)(x + 4)

Bài 3. Chứng ming rằng:

a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2

c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3

e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4

Bài 4. Tìm x biết:

a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12

c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 d. 4x(x -1) - 3(x2 - 5) - x2 = (x - 3) - (x + 4)

e. 2(3x -1)(2x + 5) - 6(2x -1)(x + 2) = -6

Bài 5. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x:

a. A = 2x(x -1) - x(2x + 1) - (3 - 3x) b. B = 2x(x - 3) - (2x - 2)(x - 2)

c. C = (3x - 5)(2x +11) - (2x + 3)(3x + 7) d. D = (2x +11)(3x - 5) - (2x + 3)(3x + 7)

Bài 6. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào y:

P = (2x - y)(4x2 + 2xy + y2 ) + y3

các bạn ơi giúp mình nha

3
8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum