Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-1=49\)
\(2x^2=49+1\)
\(2x^2=50\)
\(x^2=50:2\)
\(x^2=25\)
\(\Rightarrow\left\{{}\begin{matrix}x=5^2\\x=\left(-5\right)^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)\(\left(TM\right)\)
Vậy \(x\in\left\{5;-5\right\}\) là giá trị cần tìm
\(2x^2-1=49\)
\(2x^2=49+1\)
\(2x^2=50\)
\(x^2=25\)
\(x={5;-5}\)
p/s : đăng câu này r mà má
Lời giải:
a. $(3x+9)^{40}=49(3x+9)^{38}$
$(3x+9)^{40}-49(3x+9)^{38}$
$(3x+9)^{38}[(3x+9)^2-49]=0$
$\Rightarrow (3x+9)^{38}=0$ hoặc $(3x+9)^2-49=0$
Nếu $(3x+9)^{38}=0$
$\Rightarrow 3x+9=0$
$\Rightarrow x=-3$
Nếu $(3x+9)^2-49=0$
$\Rightarrow (3x+9)^2=49=7^2=(-7)^2$
$\Rightarrow 3x+9=7$ hoặc $3x+9=-7$
$\Rightarrow x=\frac{-2}{3}$ hoặc $x=\frac{-16}{3}$
b/
Xét $A=2^x+2^{x+1}+2^{x+2}+....+2^{x+2015}$
$2A=2^{x+1}+2^{x+2}+2^{x+3}+....+2^{x+2016}$
$\Rightarrow 2A-A=(2^{x+1}+2^{x+2}+2^{x+3}+....+2^{x+2016})-(2^x+2^{x+1}+2^{x+2}+....+2^{x+2015})$
$\Rightarrow A=2^{x+2016}-2^x$
Vậy $2^{x+2016}-2^x=2^{2019}-8$
$\Rightarrow 2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
a) Ta có:
\(2n+1⋮n-3\)
\(\Rightarrow\left(2n-6\right)+7⋮n-3\)
\(\Rightarrow2\left(n-3\right)+7⋮n-3\)
\(\Rightarrow7⋮n-3\)
\(\Rightarrow n-3\in\left\{1;7\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n-3=1\Rightarrow n=4\\n-3=7\Rightarrow n=10\end{matrix}\right.\)
Vậy n=4 hoặc n=10
b) Ta có:
\(n^2+3n-13⋮n+3\)
\(\Rightarrow n\left(n+3\right)-13⋮n+3\)
\(\Rightarrow-13⋮n+3\)
\(\Rightarrow n+3\in\left\{1;13\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+3=1\Rightarrow n=-2\left(loai\right)\\n+3=13\Rightarrow n=10\end{matrix}\right.\)
Vậy n=10
c) Ta có:
\(n^2+3⋮n-1\)
\(\Rightarrow n^2-1+4⋮n-1\)
\(\Rightarrow\left(n-1\right)\left(n+1\right)+4⋮n-1\)
\(\Rightarrow n+1+4⋮n-1\)
\(\Rightarrow n+5⋮n-1\)
\(\Rightarrow\left(n-1\right)+6⋮n-1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\in\left\{1;2;3;6\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=2\Rightarrow n=3\\n-1=3\Rightarrow n=4\\n-1=6\Rightarrow n=7\end{matrix}\right.\)
Vậy n=2 hoặc n=3 hoặc n=4 hoặc n=7
a,\(2n+1=2n-6+7=2\left(n-3\right)+7\)
Do \(2\left(n-3\right)⋮n-3\)
\(\Rightarrow n-3\in\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n-3=1\\n-3=-1\\n-3=7\\n-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=4\\n=2\\n=10\\n=-4\end{matrix}\right.\)
A = 22 + 23 + 24 + ... + 2121
⇒ A = (22 + 23) + (24 + 25) + ... + (2120 + 2121)
⇒ A = 12 + 22(22 + 23) +... + 2118(22 + 23)
⇒ A = 12 + 22.12 + ... + 2118.12
⇒ A = 12(1 + 22 + ... + 2118) ⋮ 3
⇒ A ⋮ 3
Vì: A co 120 so hạng nên ta chia A thành 60 nhoms moi nhoms co 2 so hạng như sau:
\(A=2^2+2^3+\:2^4+\:2^5+\:..+\:2^{121}=2^2\left(1+2\right)+2^4\left(1+2\right)+......+2^{120}\left(1+2\right)=2^2.3+2^4.3+......+2^{120}.3=3\left(2^2+2^4+....+2^{120}\right)⋮3\Rightarrow A⋮3\)
Vì: A co 120 so hạng nên ta chia A thành 40 nhoms moi nhoms co 3 so hạng như sau:
\(A=\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+....+\left(2^{119}+2^{120}+2^{121}\right)=2^2\left(1+2+4\right)+2^5\left(1+2+4\right)+.....+2^{119}\left(1+2+4\right)=2^2.7+2^5.7+...+2^{119}.7=7\left(2^2+2^5+....+2^{119}\right)⋮7\Rightarrow A⋮7\)
\(a.3x+27=9\)
\(3x=9-27\)
\(3x=-18\)
\(x=\left(-18\right)\div3\)
\(x=-6\)
Vậy \(x=-6\)
\(b.2x+12=3\left(x-7\right)\)
\(2x+12=3x-21\)
\(2x-3x=-12-21\)
\(-x=-33\)
\(x=33\)
Vậy \(x=33.\)
\(c.2x^2-1=49\)
\(2x^2=49+1\)
\(2x^2=50\)
\(x^2=50\div2\)
\(x^2=25\)
\(x^2=5^2=\left(-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{\pm5\right\}\)
\(d.\left|-9-x\right|-5=12\)
\(\left|-9-x\right|=12+5\)
\(\left|-9-x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}-9-x=17\\-9-x=-17\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-26\\x=8\end{matrix}\right.\)
Vậy \(x\in\left\{-26;8\right\}\)
a) 3x + 27 = 9
\(\Leftrightarrow\) 3x = 9-27
\(\Leftrightarrow\) 3x = -18
\(\Leftrightarrow\) x = (-18) : 3
\(\Leftrightarrow\) x = -6.
Vậy x = -6.
b) 2x + 12 = 3
\(\Leftrightarrow\) 2x = 3 - 12
\(\Leftrightarrow\) 2x = -9.
\(\Leftrightarrow\) x = (-9) : 2
\(\Leftrightarrow\) x = -4,5.
Vậy x = -4,5
c) 2x2 - 1 = 49
\(\Leftrightarrow\) 2x2 = 49 + 1
\(\Leftrightarrow\) 2x2 = 50
\(\Leftrightarrow\) x2 = 50 : 2
\(\Leftrightarrow\) x2 = 25
\(\Leftrightarrow\) x2 = 52
\(\Leftrightarrow\) x = 5.
Vậy x = 5.
d) |-9 - x| - 5 = 12
\(\Leftrightarrow\) |-9 - x| = 12 + 5
\(\Leftrightarrow\) |-9 - x| = 17.
\(\Rightarrow\) (-9) - x = 17 hoặc (-9) - x = -17
+) (-9) - x = 17 +) (-9) - x = -17
\(\Leftrightarrow\) x = (-19) - 17 \(\Leftrightarrow\) x = (-9) + 17
\(\Leftrightarrow\) x = -26. \(\Leftrightarrow\) x = 8.
Vậy x = -26 hoặc x = 8.
Chúc bạn học tốt !!!
Ta có: \(17^{2007}\) = \(17^{4.501}.17\) = \(\left(17^4\right)^{501}.17\) = \(\left(...1\right)^{501}.17\) = \(\left(...1\right).17=...7\)
Ta có : \(19^{21}=19^{2.10}.19=\left(19^2\right)^{10}.19=\left(...1\right)^{10}.19\)
\(=\left(...1\right).19\)\(=\left(...9\right)\)
\(2x^2-1=49\)
\(2x^2=49+1\)
\(2x^2=50\)
\(x^2=50:2\)
\(x^2=25\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=5^2\\x^2=\left(-5\right)^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\) \(\left(TM\right)\)
Vậy \(x\in\left\{5;-5\right\}\) là giá trị cần tìm
\(2x^2-1=49\)
\(2x^2=49+1\)
\(2x^2=50\)
\(x^2=25\)
\(x={5;-5}\)