Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)
\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)
\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)
b: 2x^2+7x+3=0
=>(2x+3)(x+2)=0
=>x=-3/2(loại) hoặc x=-2(nhận)
Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)
d: |B|<1
=>B>-1 và B<1
=>B+1>0 và B-1<0
=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)
Trả lời:
a, \(ĐK:x\ne\frac{1}{3}\)
\(A=\frac{3x+1-1}{1-3x}:\frac{3x-9x^2}{3x-1}=\frac{3x}{1-3x}\cdot\frac{3x-1}{3x-9x^2}=\frac{3x.\left(3x-1\right)}{\left(1-3x\right)\left(3x-9x^2\right)}=\frac{3x\left(3x-1\right)}{\left(1-3x\right)3x\left(1-3x\right)}\)
\(=\frac{3x\left(3x-1\right)}{3x\left(1-3x\right)^2}=\frac{3x\left(3x-1\right)}{3x\left(3x-1\right)^2}=\frac{1}{3x-1}\)
b, \(5x^2+3x=0\)
\(\Leftrightarrow x\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}}\)
Thay x = 0 vào A, ta có :
\(A=\frac{1}{3.0-1}=\frac{1}{-1}=-1\)
Thay x = - 3/5 vào A, ta có :
\(A=\frac{1}{3.\left(-\frac{3}{5}\right)-1}=\frac{1}{-\frac{9}{5}-1}=\frac{1}{-\frac{14}{5}}=-\frac{5}{14}\)
c, \(A=\frac{x}{x-1}\)
\(\Leftrightarrow\frac{1}{3x-1}=\frac{x}{x-1}\)\(\left(ĐK:x\ne\frac{1}{3};x\ne1\right)\)
\(\Leftrightarrow\frac{x-1}{\left(3x-1\right)\left(x-1\right)}=\frac{x\left(3x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)
\(\Rightarrow x-1=3x^2-x\)
\(\Leftrightarrow3x^2-x-x+1=0\)
\(\Leftrightarrow3x^2-2x+1=0\)
\(\Leftrightarrow3\left(x^2-\frac{2}{3}x+\frac{1}{3}\right)=0\)
\(\Leftrightarrow x^2-\frac{2}{3}x+\frac{1}{3}=0\)
\(\Leftrightarrow x^2-2.x.\frac{1}{3}+\frac{1}{9}+\frac{2}{9}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2+\frac{2}{9}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=-\frac{2}{9}\) (vô lí)
Vậy không tìm được x thỏa mãn đề bài.
d, \(\frac{6}{A}=\frac{6}{\frac{1}{3x-1}}=6\left(3x-1\right)=18x-6\)
Vậy x thuộc Z thì 6/A thuộc Z
\(A=\left(3x+1-\frac{1}{1-3x}\right):\left(\frac{3x-9x^2}{3x-1}\right)=\left(\frac{1-9x^2-1}{1-3x}\right):\left(\frac{3x\left(1-3x\right)}{3x-1}\right)=-\frac{9x}{1-3x}:\left(-3x\right)=\frac{3}{1-3x}\)
b. Với \(5x^2+3x=0\Leftrightarrow x\left(5x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\) nhưng mà ở trên ta cần có điều kiện x#0 nên
\(x=-\frac{3}{5}\Rightarrow A=\frac{3}{1-3\times\left(-\frac{3}{5}\right)}=\frac{15}{14}\)
c.\(A=\frac{x}{x-1}=\frac{3}{1-3x}\Leftrightarrow x-3x^2=3x-3\Leftrightarrow3x^2+2x-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{10}}{3}\)
d.\(\frac{6}{A}=2\times\left(1-3x\right)\) nguyên nên \(1-3x=-\frac{k}{2}\Leftrightarrow x=\frac{k+2}{6}\) với k là số nguyên
a: \(P=\dfrac{2x^2-1-x^2+1+3x}{x\left(x+1\right)}=\dfrac{x^2+3x}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\)
Bài 1 :
a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
TH1 : Thay x = 2 vào biểu thức trên ta được :
\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
TH2 : Thay x = -2 vào biểu thức trên ta được :
\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí
c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)
\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)
Vậy với x = -1 thì A = 2
d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)
\(\Rightarrow x+2< 0\)do 2 > 0
\(\Leftrightarrow x< -2\)
Vậy với A < 0 thì x < -2
e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
2.
ĐKXĐ : \(x\ne\pm2\)
a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)
Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)
Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3
c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)
<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)
d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)
e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)
Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }
a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne1\end{cases}}\)
\(A=\frac{2x+1}{x^2-3x+2}+\frac{x+1}{1-x}-\frac{x^2+5}{x^2-3x+2}+\frac{x^2+x}{x-1}\)
\(\Leftrightarrow A=\frac{2x+1}{\left(x-1\right)\left(x-2\right)}-\frac{x+1}{x-1}-\frac{x^2+5}{\left(x-2\right)\left(x-1\right)}+\frac{x^2+x}{x-1}\)
\(\Leftrightarrow A=\frac{2x+1-\left(x+1\right)\left(x-2\right)-x^2-5+\left(x^2+x\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{2x+1-x^2+x+2-x^2-5+x^3-x^2-2x}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}\)
b) Khi \(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=.0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}\)
\(\Leftrightarrow A=\frac{\left(-1\right)^3-3\left(-1\right)^2-1-2}{\left(-1-2\right)\left(-1-1\right)}=\frac{\left(-1\right)-3-1-2}{\left(-3\right)\left(-2\right)}=\frac{7}{6}\)
c) Để A = 0
\(\Leftrightarrow\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^3-3x^2+x-2=0\)2.89328919
Phần này mik k biết phân tích như thế nào, tính ra :
\(\Leftrightarrow x\approx2,89328919\)
Nhưng nếu đề bắt tìm nghiệm nguyên của x thì \(S=\varnothing\)nhé !
d) Để \(A\inℤ\)
\(\Leftrightarrow x^3-3x^2+x-2⋮\left(x-2\right)\left(x-1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^3-3x^2+x-2⋮x-2\\x^3-3x+x-2⋮x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2-x-1\right)\left(x-2\right)-4⋮x-2\\\left(x^2-2x-1\right)\left(x-1\right)-3⋮x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4⋮x-2\\3⋮x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{1;3;0;4;-2;6\right\}\\x\in\left\{0;2;-2;4\right\}\end{cases}}\)
\(\Leftrightarrow x\in\left\{0;-2;4\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{0;-2;4\right\}\)