K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

2x+\(\dfrac{1}{5}\) = 3y - \(\dfrac{2}{7}\) = 2x+3y -\(\dfrac{1}{6x}\) và 2x + 3y - z =50

có phải đề như này ko

20 tháng 11 2021

bn viết rõ đề đi ạ:)

9 tháng 7 2017

Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Dựa theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

-> x = \(12.\dfrac{3}{2}=18\)

y =\(12.\dfrac{4}{3}=16\)

z =\(12.\dfrac{5}{4}\) = 15

16 tháng 1 2016

Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)

7 tháng 7 2016

Đơn giản mà bạn

30 tháng 10 2020

\(a,\frac{1}{2x}=\frac{2}{3y}=\frac{3}{4z};x-y=15\left(đk:x,y,z\ne0\right)\)

\(\Rightarrow\frac{1}{2x}.12=\frac{2}{3y}.12=\frac{3}{4z}.12\Rightarrow\frac{6}{x}=\frac{8}{y}=\frac{9}{z}\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{9}\)

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau: }\)

\(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{x-y}{6-8}=\frac{15}{-2}\left(\text{do x-y=15}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{6}=\frac{15}{-2}\\\frac{y}{8}=\frac{15}{-2}\\\frac{z}{9}=\frac{15}{-2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-45\\y=-60\\z=-67,5\end{matrix}\right.\left(\text{t/mđk}\right)\)

Chú thích: đk: điều kiện , t/mđk: thỏa mãn điều kiện

b, Hình như đề sai ý bạn ạ.

28 tháng 10 2019

+) Với x = 2

Có: \(\frac{2.2+1}{5}=\frac{3y-2}{7}=\frac{2.2+3y-1}{6.2}\)

=> \(1=\frac{3y-2}{7}=\frac{3y+3}{12}\)

=> \(\hept{\begin{cases}3y-2=7\\3y+3=12\end{cases}}\)=> y = 3 

=> x = 2 và y = 3 thỏa mãn

+) Với x khác 2

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

\(=\frac{2x+1+3y-2-\left(2x+3y-1\right)}{5+7-6x}=\frac{0}{12-6x}=0\)

=> \(\hept{\begin{cases}\frac{2x+1}{5}=0\\\frac{3y-2}{7}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{3}\end{cases}}\)( tm )

Vậy có 2 ngiệm (x , y ) là ( 2; 3) và ( -1/2 ; 2/3 )

28 tháng 10 2019

Câu hỏi của hồ anh tú - Toán lớp 7 - Học toán với OnlineMath

Em có thể tham khảo thêm bài làm đc k tại link này.