Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(A=\left(\left|2x+\frac{1}{5}\right|+\left|-2x-\frac{1}{7}\right|\right)+\left|2x+\frac{1}{6}\right|\ge\left|2x+\frac{1}{5}-2x-\frac{1}{7}\right|+0=\frac{2}{35}\)
Dấu "=" xảy ra khi x = -1/12
Á ghi nhầm dấu + thành -. Sửa lại cho mình là x = -1/12 nhé !
ta có:
\(\left|2x+\frac{1}{7}\right|=\left|-2x-\frac{1}{7}\right|;\left|-2x-\frac{1}{7}\right|\ge-2x-\frac{1}{7}\)
\(\left|2x+\frac{1}{6}\right|\ge0;\left|2x+\frac{1}{5}\right|\ge2x+\frac{1}{5}\)
=> \( A\ge2x+\frac{1}{5}+0-2x-\frac{1}{7}=\frac{2}{35}\)
dấu "=" xảy ra <=>\(x=-\frac{1}{12}\)
Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0
áp dụng vào từng câu
a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I
A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6
Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3
b) LÀm tương tự MinB=18
Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2
a) Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(x+1\right)^2-3\ge-3\)
Dấu " = " xảy ra khi
\(\left(x+1\right)^2=0\)
\(x+1=0\)
\(x=-1\)
Vậy \(x=-1\)khi \(GTNN=-3\)
B:C: tương tự
d) Ta có: \(\left(2x-1\right)^{18}\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow D=\left(2x-1\right)^{18}+\left(y+2\right)^2+7\ge7\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}\left(2x-1\right)^{18}=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}}\)
Vậy \(x=\frac{1}{2};y=-2\)khi \(GTNN=7\)
e) \(\left|-2x+6\right|\ge0\)
\(\Rightarrow E=\left|-2x+6\right|+12\ge12\)
Dấu " = " xảy ra khi \(\left|-2x+6\right|=0\Rightarrow-2x=-6\Rightarrow x=3\)
Vậy x = 3 khi đạt GTNN = 12
F ; G tương tự
hok tốt!!
+) A=(x+1)2 - 3
Vì (x+1)2 \(\ge\)0 nên (x+1)2 - 3 \(\ge\) - 3 .Dấu "=" xảy ra \(\Leftrightarrow\)(x+1)2 = 0 \(\Leftrightarrow\)x = - 1
Vậy min A = - 3 khi x = -1
+) B=(2x-5)20 + 9
Vì (2x-5)20 \(\ge\)0 nên (2x-5)20+9\(\ge\)9.Dấu "=" xảy ra \(\Leftrightarrow\)(2x - 5)20=0 \(\Leftrightarrow\)x=\(\frac{5}{2}\)
Vậy min B=9 khi x=\(\frac{5}{2}\)
Những phần khác cũng làm tương tự :
+) minC= - 5 khi x=\(\frac{4}{3}\)
+) minD= 7 khi x=\(\frac{1}{2}\)và y= - 2
+) minE=12 khi x=3
+) min F = -17 khi x=5
+) min G = -12 khi x= - 4