K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

a) Thu gọn và sắp xếp:

f(x)= \(5x^4-4x^3-2x^2-9x+7\)

g(x)=\(-5x^4+4x^3+3x^2+9x-11\)

b) f(x) + g(x)= \(5x^4-4x^3-2x^2-9x+7\) + ( \(-5x^4+4x^3+3x^2+9x-11\))

= \(5x^4-4x^3-2x^2-9x+7\) \(-5x^4+4x^3+3x^2+9x-11\)

= \(5x^4-5x^4-4x^3+4x^3-2x^2+3x^2+7-11\)

= \(x^2-4\)

Vậy H(x) = \(x^2-4\)

f(x) - g(x)= \(5x^4-4x^3-2x^2-9x+7\) - ( \(-5x^4+4x^3+3x^2+9x-11\))

= \(5x^4-4x^3-2x^2-9x+7\) \(+5x^4-4x^3-3x^2-9x+11\)

= \(5x^4+5x^4-4x^3-4x^3-2x^2-3x^2-9x-9x+7+11\)

= \(10x^4-8x^3-5x^2-18x+18\)

Vậy P(x) = \(10x^4-8x^3-5x^2-18x+18\)

c) Đa thức H(x) có nghiệm khi:

\(x^2-4=0\)

x.x-4=0

x.x=4

\(x^2\) =4

=> x= \(\pm2\)

Vậy x=2 hoặc x=-2 là nghiệm của đa thức H(x)

26 tháng 4 2019

trong sản xuất, con người đã làm gì để tận dụng sự đa đạng của điều kiện môi trường sống.

mọi người giúp em với, mai em thi rồi

12 tháng 4 2019

1. Ta có \(|3x-1|=\frac{1}{2}\)

\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)

Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha

Sai thì thôi nha bn mik cx chưa lm dạng này bh

13 tháng 4 2019

Câu 1:

\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)

\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)

\(=x^2+9x+1\)

Ta có: \(\left|3x-1\right|=\frac{1}{2}\)

TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)

\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)

TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)

\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)

15 tháng 7 2019

Đề bài là gì vậy bạn?

15 tháng 7 2019

Tìm nghiệm của các đa thức sau

18 tháng 7 2018

a. ( 2x - 5) ( x -3 ) = \(2x^2\)

=> \(2x^2-6x-5x+15\) = \(^{ }2x^2\)

=> \(2x^2-2x^2-6x-5x=-15\)

=> -11x = -15

=> x = \(\dfrac{15}{11}\)

18 tháng 7 2018

b. (-2x+1)(4x-1)=(7-x).8x

=> \(^{ }-8x^2+2x+4x-1=56x-8x^2\)

=> \(^{ }-8x^2+8x^2+2x+4x-56x=1\)

=> -50x = 1

=> x = \(\dfrac{-1}{50}\)

30 tháng 3 2018

b) x2+5x-6 =0

\(\Leftrightarrow x^2+6x-x-6=0\)

\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=1\end{matrix}\right.\)

Vậy S = {-6;1}

c) x2-4x+3=0

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy S = {3;1}

d) 2x2+5x+3=0

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy S = {-1;\(\dfrac{-3}{2}\)}

30 tháng 3 2018

bài 2

\(\left(x-1\right)^2+\left(x+5\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\) (vô lí)

Vậy pt vô nghiệm

26 tháng 4 2019

p/s: -1/2xy nghĩa là -1 phần 2 xy nha các bạn!!!!

Câu 1:

Ta có: \(M\left(x\right)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)

\(=x^4+2x^2+1\)

\(=\left(x^2+1\right)^2\ge1\forall x\)

hay M(x) vô nghiệm(đpcm)

Câu 2:

Ta có: A(0)=5

\(\Leftrightarrow m+n\cdot0+p\cdot0\cdot\left(0-1\right)=5\)

\(\Leftrightarrow m=5\)

Ta có: A(1)=-2

\(\Leftrightarrow m+n\cdot1+p\cdot1\cdot\left(1-1\right)=-2\)

\(\Leftrightarrow5+n=-2\)

hay n=-2-5=-7

Ta có: A(2)=7

\(\Leftrightarrow5+\left(-7\right)\cdot2+p\cdot2\cdot\left(2-1\right)=7\)

\(\Leftrightarrow-9+2p=7\)

\(\Leftrightarrow2p=16\)

hay p=8

Vậy: Đa thức A(x) là 5-7x+8x(x-1)

\(=5-7x+8x^2-8x\)

\(=8x^2-15x+5\)

3 tháng 4 2018

Căng, sự thật là nó rất căng

Nhg dù sao thì.....

1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)

Xét \(A\left(x\right)=0\)

\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)

\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)

\(\Rightarrow-3x^2-12x+15=0\)

\(\Rightarrow-3x^2+3x-15x+15=0\)

\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)

Xét \(B\left(x\right)=0\)

\(\Rightarrow x^3+x^2-4x-4=0\)

\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)

Đó là những j mình biết khocroikhocroi

28 tháng 2 2016

Không có ngiệm nguyên hay hữu tỉ mà bạn

28 tháng 2 2016

cau hay ket bn voi mk di