Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Vậy GTNN của A=-11
Câu 3:
GTNN của khi -2x+1 nhỏ nhất. Vậy -2x+1=1(vì mẫu số khác 0 mà) nên x=0
vậy GTNN của B là 3
Câu 4
Trong tam giác vuông có cạnh huyền lớn nhất nên:
Vậy a=16
Câu 5:
Ta thấy nên
Nhìn vào biểu thức thấy ngay x=1;y=2
Câu 6: Khoảng cách từ A đến O chính là đường chéo của tam giác vuông OAB(với B trên Ox là -3 ý)
Kết quả là 5
Câu 7:
Xét suy ra x là số lẻ.
Đặt x=2k+1. Thay x=2k+1 vào có:
chia hết cho 2 mà y nguyên tố nên y=2. Thay y=2 vào suy ra x=3
\(\Leftrightarrow2^{x+1}.3^y=2^{2x}.3^x\)
\(\Leftrightarrow\dfrac{2^{2x}.3^x}{2^{x+1}.3^y}=1\Leftrightarrow2^{x-1}.3^{x-y}=1\)
\(\Leftrightarrow\dfrac{2^x3^{x-y}}{2}=1\Leftrightarrow2^x.3^{x-y}=2\)
\(\Leftrightarrow2^x.3^{x-y}=2^1.3^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Ta có 2x + 1 . 3y = 12x
2x + 1 . 3y = 22x . 3x
⇒ x + 1 = 2x
x = y
Vậy x = y = 1
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)
Ta có :
\(x:y:z=4:6:8=2:3:4\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
=> x= 2k
=> y = 3k
=> z = 4k
Thay vào biểu thức:
2x + y - 3z = 5
=> 4k + 3k - 12k = 5
=> -5k = 5
=> k = -1
=> x = -2 ; y = -3 ; z = -4
\(\frac{y}{x}=75\%=\frac{75}{100}=\frac{3}{4}=>\frac{y}{3}=\frac{x}{4}\)
đặt y/3=x/4=k=>y=3k;x=4k
thay vào=>xy=4k.3k=12.k^2=300=>k^2=300:12=25
=>k=+5
+)với k=5=>x=4k=4.5=20
y=3k=3.5=15
+)với k=-5=>x=4k=4.(-5)=-20
y=3k=3.(-5)=-15
mà x;y là số tự nhiên=>x=20;y=15
tick nhé
Dùng phương pháp chặn :
x \(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2
\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3 (1)
x2 + y2 + z2 = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)
Kết hợp (1) và (2) ta có :
34/3 \(\le\) z2 \(\le\) 34
\(\Rightarrow\) z2 \(\in\) { 16; 25}
vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}
th1 Z = 4 ta có :
x2 + y2 + 16 = 34
x2 + y2 = 12
x \(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)
x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)
Kết hợp (*) và (**) ta có :
6 \(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3
với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)
th2 : z = 5 ta có :
x2 + y2 + 25 = 34
\(\Rightarrow\) x2 + y2 = 34 - 25 = 9
x \(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)
x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)
Kết hợp (a) và (b) ta có :
9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3
với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0
kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt
Hiệu của 2 số là 38. Nếu tăng số trừ lên 9 đơn vị và giữ nguyên số bị trừ thì hiệu của 2 số mới là bao nhiêu?
2x + 1.3y = 12x
=> 2x + 1 . 3y = (22.3)x
=> 2x + 1.3y = 22x.3x
=> \(\frac{3^y}{3^x}=\frac{2^{2x}}{2^{x+1}}\Rightarrow3^{y-x}=2^{x-1}\Rightarrow\hept{\begin{cases}y-x=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy x = 1 ; y = 1