K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(2x+1)^3=(x-5)^3

\(\left(2x+1\right)^3=\left(x-5\right)^3\\ \Rightarrow2x+1=x-5\\ \Leftrightarrow3x=-6\\ \Leftrightarrow x=-2\)

HT

3 tháng 3 2020

Bài 1:

1. \(x-8=3-2\left(x+4\right)\)

\(x-8=3-2x-8\)

\(3x=3\Rightarrow x=1\)

2. \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(2x+6-3x+3=2\)

\(-x+9=2\Rightarrow x=7\)

3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(4x-20-3x+1=x-19\)

\(0x=0\Rightarrow x=0\)

4. \(7-\left(x-2\right)=5\left(2x-3\right)\)

\(7-x+2=10x-15\)

\(-11x=-24\Rightarrow x=\frac{24}{11}\)

5. \(32-4\left(0,5y-5\right)=3y+2\)

\(32-2y+20=3y+2\)

\(-5y=-50\Rightarrow y=10\)

6. \(3\left(x-1\right)-x=2x-3\)

\(3x-3-x=2x-3\)

\(0x=0\Rightarrow x=0\)

Bài 2:

1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)

\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)

\(\frac{10-5x-9+6x}{15}=0\)

\(x+1=0\Rightarrow x=-1\)

2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)

\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)

\(\frac{15-20x-4x-8}{20}=0\)

\(7-24x=0\)

\(24x=7\Rightarrow x=\frac{7}{24}\)

4 tháng 3 2020

Bạn giúp mình nốt nha ☺

a) Ta có: \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x+5\right)\left(2x-1\right)-\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow2x^2-x+10x-5-\left(2x^2+2x-3x-3\right)=0\)

\(\Leftrightarrow2x^2+9x-5-2x^2+x+3=0\)

\(\Leftrightarrow10x-2=0\)

hay 10x=2

\(\Leftrightarrow x=\frac{1}{5}\)

Vậy: \(x=\frac{1}{5}\)

b) Ta có: \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)

\(\Leftrightarrow x^2+9x+x+9=x^2+5x+3x+15\)

\(\Leftrightarrow x^2+10x+9-x^2-8x-15=0\)

\(\Leftrightarrow2x-6=0\)

hay 2x=6

\(\Leftrightarrow x=3\)

Vậy: x=3

c) Ta có: \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)

\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)

\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)

\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)

\(\Leftrightarrow33x-1=0\)

\(\Leftrightarrow33x=1\)

hay \(x=\frac{1}{33}\)

Vậy: \(x=\frac{1}{33}\)

d) Ta có: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)

\(\Leftrightarrow3x^2+5x-6x-10=2x^2+2x-4x-4\)

\(\Leftrightarrow3x^2-x-10=2x^2-2x-4\)

\(\Leftrightarrow3x^2-x-10-2x^2+2x+4=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+3x-2x-6=0\)

\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-3;2\right\}\)

đ) Ta có: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)

e) Ta có: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x-4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

a) $(x+5)(2x-1)=(2x-3)(x+1)$

$\Leftrightarrow 2x^2+9x-5=2x^2-x-3$

$\Leftrightarrow 10x=2\Rightarrow x=\frac{1}{5}$

b)

$(x+1)(x+9)=(x+3)(x+5)$

$\Leftrightarrow x^2+10x+9=x^2+8x+15$

$\Leftrightarrow 2x=6\Rightarrow x=3$

c)

$(3x+5)(2x+1)=(6x-2)(x-3)$

$\Leftrightarrow 6x^2+13x+5=6x^2-20x+6$

$\Leftrightarrow 33x=1\Rightarrow x=\frac{1}{33}$

27 tháng 9 2019

\(\left(x-3\right)\left(x-1\right)-3\left(x-3\right)\)

\(=\left(x-3\right)\left(x-1-3\right)\)

\(=\left(x-3\right)\left(x-4\right)\)

27 tháng 9 2019

\(\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)

\(=\left(x-1\right)\left(2x+1\right)\left(1+3x+6\right)\)

\(=\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)

13 tháng 4 2017

5)\(\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\Leftrightarrow\dfrac{3\left(x-3\right)}{15}=\dfrac{90-5\left(1-2x\right)}{15}\)

\(\Leftrightarrow\)3x-9=90-5+10x\(\Leftrightarrow\)3x-10x=90-5+9\(\Leftrightarrow\)-7x=94\(\Leftrightarrow\)x=\(-\dfrac{94}{7}\)

Vậy tập nghiệm của PT là S={\(-\dfrac{94}{7}\)}

6)\(\dfrac{3x-2}{6}-5=3-\dfrac{2\left(x+7\right)}{4}\Leftrightarrow\dfrac{2\left(3x-2\right)-60}{12}=\dfrac{36-6\left(x+7\right)}{12}\)\(\Leftrightarrow\)6x-4-60=36-6x-42\(\Leftrightarrow\)6x+6x=36-42+64\(\Leftrightarrow\)12x=58\(\Leftrightarrow\)x=\(\dfrac{29}{6}\)

Vậy tập nghiệm của PT là S={\(\dfrac{29}{6}\)

7)\(\dfrac{3x-7}{2}+\dfrac{x+1}{3}=-16\Leftrightarrow\dfrac{3\left(3x-7\right)+2\left(x+1\right)}{6}=\dfrac{-96}{6}\)

\(\Leftrightarrow\)9x-21+2x+2=-96\(\Leftrightarrow\)11x=-96+19\(\Leftrightarrow\)11x=-77\(\Leftrightarrow\)x=-7

Vậy tập nghiệm của PT là S={-7}

8)\(x-\dfrac{x+1}{3}=\dfrac{2x+1}{5}\Leftrightarrow\dfrac{15x-5\left(x+1\right)}{15}=\dfrac{3\left(2x+1\right)}{15}\)

\(\Leftrightarrow\)15x-5x-5=6x+3\(\Leftrightarrow\)10x-6x=5+8\(\Leftrightarrow\)4x=8\(\Leftrightarrow\)x=2

Vậy tập nghiệm của PT là S={2}

13 tháng 4 2017

1)2x+x+12=0\(\Leftrightarrow\)3x=-12\(\Leftrightarrow\)x=-4

vậy tập nghiệm của PT là S={-4}

2)x-5=3-x\(\Leftrightarrow\)x+x=3+5\(\Leftrightarrow\)2x=8\(\Leftrightarrow\)x=4

Vậy tập nghiệm của PT là S={4}

3)2x-(3-5x)=4(x+3)\(\Leftrightarrow\)2x-3+5x=4x+12\(\Leftrightarrow\)7x-4x=12+3\(\Leftrightarrow\)3x=15\(\Leftrightarrow\)x=5

Vậy tập nghiệm của PT là S={5}

4)\(\dfrac{2x+3}{3}=\dfrac{5-4x}{2}\Leftrightarrow\dfrac{2\left(2x+3\right)}{6}=\dfrac{3\left(5-4x\right)}{6}\)

\(\Leftrightarrow\)4x+6=15-12x\(\Leftrightarrow\)4x+12x=15-6\(\Leftrightarrow\)16x=9\(\Leftrightarrow\)x=\(\dfrac{9}{16}\)

Vậy tập nghiệm của PT là S={\(\dfrac{9}{16}\)}

8 tháng 6 2019

Tìm x:

1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8

\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)

\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)

Vậy x = 5

2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)

\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)

\(\Leftrightarrow-4x+15=-7\)

\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)

Vậy x = \(\frac{11}{2}\)

3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6

\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)

\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)

\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)

Vậy x = -1

4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3

\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)

\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)

\(\Leftrightarrow14x=0\Leftrightarrow x=0\)

Vậy x = 0

5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)

\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)

Vậy x = \(\frac{1}{2}\)

6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27

\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)

\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)

\(\Leftrightarrow-x^3=27\)

\(\Leftrightarrow x=-3\)

Vậy x = -3

7. 3x (8x - 4) - 6x (4x - 3) = 30

\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)

\(\Leftrightarrow0=30\) ( vô lý)

Vậy pt vô nghiệm

8. 3x (5 - 2x) + 2x (3x - 5) = 20

\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)

\(\Leftrightarrow5x=20\Leftrightarrow x=4\)

Vậy x = 4

4 tháng 11 2020

tck đầu tiên chọn câu trả lời của mình đi

16 tháng 7 2019

\(\left(2x-1\right)\left(1+2x\right)-3\left(x-3\right)^2-\left(2+x\right)^2\)

\(=\left(2x-1\right)\left(2x+1\right)-3\left(x^2-6x+9\right)-\left(4+4x+x^2\right)\)

\(=4x^2-1-3x^2+18x-27-4-4x-x^2\)

\(=14x-32\)

Phần b ,c giải phương trình??

\(\left(2x-3\right)^2+\left(3-x\right)^2+2\left(3-x\right)\left(2x-3\right)=5\)

\(\Leftrightarrow\left(2x-3\right)\left(2x-3+2\left(3-x\right)\right)+\left(3-x\right)^2=5\)

\(\Leftrightarrow\left(2x-3\right)\left(2x-3+6-2x\right)+\left(3-x\right)^2=5\)

\(\Leftrightarrow3\left(2x-3\right)+9-6x+x^2=5\)

\(\Leftrightarrow6x-9+9-6x+x^2=5\)

\(\Leftrightarrow x^2=5\)

\(\Leftrightarrow x=\pm\sqrt{5}\)

\(\left(x+5\right)\left(5-x\right)+\left(2x-1\right)^2-\left(3x-1\right)\left(x+2\right)-7=0\)

\(\Leftrightarrow\left(5-x\right)\left(5-x\right)+4x^2-4x+1-\left(3x^2+6x-x-2\right)-7=0\)

\(\Leftrightarrow25-x^2+4x^2-4x+1-3x^2-6x+x+2-7=0\)

\(\Leftrightarrow21-9x=0\)

\(\Leftrightarrow9x=21\)

\(\Leftrightarrow x=3\)

18 tháng 6 2016

f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)

\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)

\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)

\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)

\(-x^3=27\)

\(x=-3\)

18 tháng 6 2016

Bài 1:

a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(6x-9+4-2x=-3\)

\(4x=-2\)

\(x=-\frac{1}{2}\)

b/ \(2x\left(x^2-2\right)+x^2\left(1-2x\right)-x^2=-12\)

\(2x^3-4x+x^2-2x^3-x^2=-12\)

\(-4x=-12\)

\(x=\frac{1}{3}\)

12 tháng 9 2017

bài này bạn nhân lần lượt ra, cuối cùng hết giá trị của x, cò lại số tự nhiên. vậy là đã cm được biểu thức k phụ thuộc vào giá trị của biến rồi đó.

VD: 

\(\left(x-3\right)\left(x^2+3x+9\right)-x^3+7\)

\(=x^3+3x^2+9x-3x^2-9x-27-x^3+7\)

\(=-20\)