Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
720:[41-(2x-5)]=2^3.5
720:[41-2x+5]=40
[41+5-2x]=720:40
46-2x=18
2x=46-18
2x=28
x=14
a, 2x.4=128
2x=128:4
2x=32
2x=25
x=5
Vay x=5
b, x15=x
x=1
Vay x=1
(2x+1)^3=125
<=>2x+1=5 (vì là bậc 3 nên giữ nguyên dấu)
<=>2x=4
=>x=2
li ke nha
a) \(5.\left(x-3\right)=15\)
\(x-3=15:5\)
\(x-3=3\)
\(x=6\)
b)\(10+2.x=4^5:4^3\)
\(10+2.x=16\)
\(2x=16-10\)
\(2x=6\)
\(x=3\)
c) \(5^{x+1}=125\)
\(5^{x+1}=5^3\)
\(x+1=3\)
\(x=2\)
d) \(5^{2x-3}-2.5^2=5^2.3\)
\(5^{2x-3}=2.5^2+5^2.3\)
\(5^{2x-3}=125\)
\(5^{2x-3}=5^2\)
\(2x-3=2\)
\(2x=6\)
\(x=3\)
Mk nhanh nek bn
a) \(\left(x-1\right)^3=125\)
\(\Leftrightarrow\left(x-1\right)^3=5^3\)
\(\Leftrightarrow x-1=5\)
\(\Leftrightarrow x=5+1\)
\(\Leftrightarrow x=6\)
Vậy \(x=6\)
b) \(2^{x+2}-2^x=96\)
\(\Leftrightarrow\left(2^2-1\right)\cdot2^x=96\)
\(\Leftrightarrow\left(4-1\right)\cdot2^x=96\)
\(\Leftrightarrow3\cdot2^x=96\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
c) \(\left(2x+1\right)^3=343\)
\(\Leftrightarrow\left(2x+1\right)^3=7^3\)
\(\Leftrightarrow2x+1=7\)
\(\Leftrightarrow2x=7-1\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
Vậy \(x=3\)
d) \(720:\left[41-\left(2x-5\right)\right]=2^3\cdot5\)
\(\Leftrightarrow720:\left[41-\left(2x-5\right)\right]=2^3\cdot5\left(đk:x\ne23\right)\)
\(\Leftrightarrow720:\left(41-2x+5\right)=8\cdot5\)
\(\Leftrightarrow720:\left(46-2x\right)=40\)
\(\Leftrightarrow\dfrac{720}{46-2x}=40\)
\(\Leftrightarrow\dfrac{720}{2\left(23-x\right)}=40\)
\(\Leftrightarrow\dfrac{360}{23-x}=40\)
\(\Leftrightarrow360=40\left(23-x\right)\)
\(\Leftrightarrow9=23-x\)
\(\Leftrightarrow x=23-9\)
\(\Leftrightarrow x=14\left(đk:x\ne23\right)\)
\(\Leftrightarrow x=14\)
Vậy \(x=14\)
e) \(2^x\cdot7=224\)
\(\Leftrightarrow7\cdot2^x=224\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
f) \(\left(3x+5\right)^2=289\)
\(\Leftrightarrow3x+5=\pm17\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+5=17\\3x+5=-17\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{22}{3}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{22}{3};x_2=4\)
a)\(\left(x-1\right)^3=125\Leftrightarrow\left(x-1\right)^3=5^3\Leftrightarrow x-1=5\Leftrightarrow x=6\)b)\(2^{x+2}-2^x=96\Leftrightarrow2^x.2^2-2^x=96\Leftrightarrow2^x\left(2^2-1\right)=96\Leftrightarrow2^x.3=96\Leftrightarrow2^x=32\Leftrightarrow x=5\)c)\(\left(2x-1\right)^3=343\Leftrightarrow\left(2x-1\right)^3=7^3\Leftrightarrow2x-1=7\Rightarrow2x=8\Rightarrow x=4\)d)\(720:\left[41-\left(2x-5\right)\right]=2^3.5\)
\(720:\left[41-\left(2x-5\right)\right]=40\Leftrightarrow\left[41-\left(2x-5\right)\right]=720:40=18\)
\(\Leftrightarrow41-2x+5=18\Leftrightarrow36-2x=18\Leftrightarrow2x=18\Leftrightarrow x=9\)
e)\(2^x.7=224\Leftrightarrow2^x=224:7=32\Leftrightarrow2^x=2^5\Leftrightarrow x=5\)
f) \(\left(3x+5\right)^2=289\Leftrightarrow\left(3x+5\right)=17^2\Leftrightarrow3x+5=17\Leftrightarrow3x=12\Leftrightarrow x=4\)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
\(a,4^{2x-6}=1\)\(\Leftrightarrow2x-6=0\Leftrightarrow2x=6\Rightarrow x=3\)
\(b,2^{2x-1}=16\Rightarrow2^{2x-1}=2^4\)
\(\Rightarrow2x-1=4\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
\(c,5< 5^x< 125\Rightarrow5^1< 5^x< 5^3\)\(\Rightarrow1< x< 3\)
\(d,5^{x+1}=125\Rightarrow5^{x+1}=5^3\Rightarrow x+1=3\Rightarrow x=2\)
\(a,4^{2x-6}=1\)
\(4^{2x-6}=4^0\)
\(\Rightarrow2x-6=0\)
\(\Rightarrow2x=6\Leftrightarrow x=3\)
\(b,2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
\(\Rightarrow\left[2x+1\right]^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
\(\Leftrightarrow\left(2x+1\right)^3=\left(5^3\right)\)
\(\Leftrightarrow2x+1=5\)
\(\Leftrightarrow2x=5-1\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=4:2\)
\(\Leftrightarrow x=2\)
(2x+1)3=125
=>2x+1=5
=>2x=5-1
=>2x=4
=>x=4:2
=>x=2
(2x+1)3=125
=>2x+1=5
=>2x=5-1
=>2x=4
=>x=4:2
=>x=2