Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có làm thì mới có ăn ko làm mà đòi có ăn thì ăn đồng bằng ăn cát
a, (2x + 1)(y – 5) = 12
Theo đề bài ta có 2x+1)(y-5)=12=>2x+1;y-5 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}Mà 2x+1 là số nguyên lẻ=>2x+1 thuộc{1 ; -1;3;-3}=>y-5 thuộc{12;-12;4;-4}=>x thuộc {0;-1;1;-2}=>y thuộc {17;4;9;1}
\(\Rightarrow2^{2x}+2^x+2\cdot2^x+2-3^y=89\Rightarrow4^x+3\cdot2^x+2-3^y=89\)
Ta thấy \(4\equiv1\left(mod3\right)\Rightarrow4^x\equiv1^x\equiv1\left(mod3\right);3\cdot2^x\equiv0\left(mod3\right);3^y\equiv0\left(mod3\right);2\equiv2\left(mod3\right)\Rightarrow4^x+3\cdot2^x-3^y+2\equiv1+0-0+2\equiv3\equiv0\left(mod3\right)\) Mà \(89\equiv2\left(mod3\right)\) \(\Rightarrow VT\ne VP\Rightarrow\)vô lí\(\Rightarrow\) ko tồn tại x,y Vậy...
\(\left(x-10\right)\cdot11=22\\ x-10=\dfrac{22}{11}\\ x-10=2\\ x=2+10=12\)
--------------------------------------
\(2x+15=-27\\ 2x=-27-15\\ 2x=-42\\ x=-\dfrac{42}{2}=-21\)
---------------------------------------
\(-765-\left(305+x\right)=100\\ -305-x=100+765\\ -305-x=865\\ -x=865+305=1170\\ x=-1170\)
---------------------------------------
\(2^x\div4=16\\ 2^x=16\cdot4\\ 2^x=64\\ 2^x=2^6\\ x=6\)
a: Ta có: \(814-\left(x-305\right)=712\)
\(\Leftrightarrow x-305=102\)
hay x=407
b: Ta có: \(2x-138=2^3\cdot2^2\)
\(\Leftrightarrow2x=32+138=170\)
hay x=85
c: Ta có: \(20-\left[7\left(x-3\right)+4\right]=2\)
\(\Leftrightarrow7\left(x-3\right)+4=18\)
\(\Leftrightarrow7\left(x-3\right)=14\)
\(\Leftrightarrow x-3=2\)
hay x=5
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương
=> ĐPCM
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương
=> ĐPCM
b) 2x + 15 = -27
2x = -27 - 15
2x = -42
x = -42 : 2
x = -21
c) -765 - (305 + x) = 100
305 + x = -765 - 100
305 + x = -865
x = -865 - 305
x = -1170
d) 2x : 4 = 16
2x = 16 x 4
2x = 64
2x = 26
⇒ x = 6
e) 128 - 3.(x + 4) = 23
3.(x + 4) = 128 - 23
3.(x + 4) = 105
x + 4 = 105 : 3
x + 4 = 35
x = 35 - 4
x = 31
Bài 2:
a: Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)