Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a) \(x^2+4y^2+4xy-16\)
\(=x^2+2.2xy+\left(2y\right)^2-4^2\)
\(=\left(x+2y\right)^2-4^2\)
\(=\left(x+2y-4\right)\left(x+2y+4\right)\)
b) ta có:
\(\left(2x+y\right)\left(y-2x\right)+4x^2\)
\(=-\left(2x-y\right)\left(2x+y\right)+4x^2\)
\(=\left(2x\right)^2-\left[\left(2x\right)^2-y^2\right]\)
\(=\left(2x\right)^2-\left(2x\right)^2+y^2\)
\(=y^2\)
Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của x
nên tại y = 10
giá trị của biểu thức trên bằng y2 = 102 = 100
a) \(x^2+4y^2+4xy-16\)
\(=\left(x^2+4xy+4y^2\right)-16\)
\(=\left[x^2+2.x.2y+\left(2y\right)^2\right]-4^2\)
\(=\left(x+2y\right)^2-4^2\)
\(=\left(x+2y-4\right)\left(x+2y+4\right)\)
b) Đặt \(A=\left(2x+y\right)\left(y-2x\right)+4x^2\)
\(A=y^2-4x^2+4x^2\)
\(A=y^2\)
Thay y = 10 vào biểu thức A ta được :
\(A=y^2=10^2=100\)
Vậy giá trị của biểu thức A là 100
Ta có : \(\left(2x+y\right)\left(y-2x\right)+4x^2\)
= \(-\left(2x-y\right)\left(2x+y\right)+4x^2\)
\(=-\left(4x^2-y^2\right)+4x^2\)
\(=-4x^2+y^2+4x^2=y^2\)
- Thay y =10 vào biểu thức trên ta được :
\(10^2=100\)
Câu 1:
a) Ta có: \(x^2+4y^2+4xy-16\)
\(=\left[x^2+2\cdot x\cdot2y+\left(2y\right)^2\right]-4^2\)
\(=\left(x+2y\right)^2-4^2\)
\(=\left(x+2y-4\right)\left(x+2y+4\right)\)
b) Ta có: \(\left(2x+y\right)\left(y-2x\right)+4x^2\)
\(=\left(y+2x\right)\left(y-2x\right)+4x^2\)
\(=y^2-4x^2+4x^2\)
\(=y^2\)(1)
Thay y=10 vào biểu thức (1), ta được
\(10^2=100\)
Vậy: 100 là giá trị của biểu thức \(\left(2x+y\right)\left(y-2x\right)+4x^2\) là 100
Câu 2:
Ta có: \(2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
mà 2≠0
nên \(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy: x∈{0;3}
Câu 3:
Ta có: \(\frac{3x+10}{x+3}-\frac{x+4}{x+3}\)
\(=\frac{\left(3x+10\right)-\left(x+4\right)}{x+3}\)
\(=\frac{3x+10-x-4}{x+3}\)
\(=\frac{2x+6}{x+3}=\frac{2\left(x+3\right)}{x+3}=2\)
Bài 9:
1:
a) Ta có: \(x^2+2xy+y^2-9\)
\(=\left(x+y\right)^2-3^2\)
\(=\left(x+y+3\right)\left(x+y-3\right)\)
b) Ta có: \(4x\left(2x-5\right)+3\left(5-2x\right)\)
\(=4x\left(2x-5\right)-3\left(2x-5\right)\)
\(=\left(2x-5\right)\left(4x-3\right)\)
c) Ta có: \(x^2+9y^2+6xy-25\)
\(=\left(x+3y\right)^2-5^2\)
\(=\left(x+3y-5\right)\left(x+3y+5\right)\)
d) Ta có: \(3x^2+5y-3xy-5x\)
\(=3x\left(x-y\right)+5\left(y-x\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
=(x-y)(3x-5)
2)
Ta có: \(\left(2x+y\right)\left(y-2x\right)+4x^2\)
\(=y^2-4x^2+4x^2=y^2\)(1)
Thay y=10 vào biểu thức (1), ta được:
\(10^2=100\)
Vậy: 100 là giá trị của biểu thức \(\left(2x+y\right)\left(y-2x\right)+4x^2\) tại x=-2011 và y=10
Bài 2:
\(A=x^2+4y^2-2x+10-4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)
\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)
\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)
\(=x^2+2xy+y^2+2x+2y+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1\)
Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)
\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)
\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)
Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)
\(D=x^2+y^2+2xy-4x-4y-3\)
\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:
\(D=4^2-4.4-3=16-16-3=-3\)
Bài 3:
a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)
\(=-\left(3x-2\right)^2-1\)
Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)
Vậy N < 0
b) ghi đề cẩn thận lại đi, mk k hiểu
+) ta có : \(D=x^2+y^2+2xy-4x-4y+100\)
\(=\left(x+y\right)^2-4\left(x+y\right)+100=3^2-4.3+100=97\)
+) ta có : \(2x^2+y^2=4y-4x-6\Leftrightarrow2x^2+4x+2+y^2-4y+4=0\)
\(\Leftrightarrow2\left(x+1\right)^2+\left(y-2\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
thế vào \(A\) ta có :
\(A=\dfrac{2x^{100}+5\left(y-3\right)^{2011}}{x+y}=\dfrac{2.\left(-1\right)^{100}+5\left(2-3\right)^{2011}}{-1+2}=-3\)
Trả lời:
g) G = ( 3x + 5 ).( 2x - 1 ) + ( 4x - 1 ).( 3x + 2 )
= 6x2 - 3x + 10x - 5 + 12x2 + 8x - 3x - 2
= 18x2 + 12x - 7
Ta có: | x | = 2 => x = 2 hoặc x = - 2
Thay x = 2 vào G, ta có:
G = 18.22 + 12.2. - 7 = 89
Thay x = - 2 vào G, ta có:
G = 18.(- 2 )2 + 12.( - 2 ) - 7 = 41
h) H = ( 2x + y ).( 2z + y ) + ( x - y ).( y - z )
= 4xz + 2xy + 2yz + y2 + xy - xz - y2 + yz
= 3xz + 3xy + 3yz
Ta có: z = | 1 | = 1
Thay x = 1; y = 1; z = 1 vào H, ta có:
H = 3.1.1 + 3.1.1 + 3.1.1 = 9
(2x + y)(y- 2x) + 4x2
= (y + 2x)(y - 2x) + 4x2
= y2 - 4x2 + 4x2
= y2
Tại x = -2011 và y = 10 nên
y2 = 102 = 100