K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Δ=(-12)^2-4*2*(9+4căn 2)

=144-72-32căn 2=72-32căn 2

=(8-2căn 2)^2

=>PT có hai nghiệm pb là:

\(\left\{{}\begin{matrix}x=\dfrac{12-8+2\sqrt{2}}{4}=\dfrac{2+\sqrt{2}}{2}\\x_2=\dfrac{2-\sqrt{2}}{2}\end{matrix}\right.\)

c: Δ=(-30)^2-4*3*(-26+8căn 3)

=900+312-96căn 3

=1212-2*căn 3072

=>Phương trình có hai nghiệm pb là:

\(\left\{{}\begin{matrix}x=\dfrac{30-2\sqrt{1212-2\sqrt{3072}}}{6}\\x=\dfrac{30+2\sqrt{1212-2\sqrt{3072}}}{6}\end{matrix}\right.\)

a: \(\Leftrightarrow\left(-x+3\right)\left(x+6\right)=18\)

\(\Leftrightarrow-x^2-6x+3x+18-18=0\)

\(\Leftrightarrow-x\left(x+3\right)=0\)

=>x=0 hoặc x=-3

b: \(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x-\dfrac{4}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{\sqrt{21}}{3}-1;\dfrac{-\sqrt{21}}{3}-1\right\}\)

c: =>x(3x-5)=0

=>x=0 hoặc x=5/3

d: =>(x-2)(x+2)=0

=>x=2 hoặc x=-2

22 tháng 8 2019

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

12 tháng 1 2022

\(\sqrt{x^2+2x+1}-2021=0\left(a\right)\)

ĐKXĐ: \(x\in R\)

\(\left(a\right)\Leftrightarrow\sqrt{\left(x+1\right)^2}-2021=0\)

\(\Leftrightarrow\left|x+1\right|-2021=0\)

\(\Leftrightarrow x+1-2021=0\)

\(\Leftrightarrow x=2020\left(tmđk\right)\)

26 tháng 12 2017

Đáp án A

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

20 tháng 6 2021

`a)x^2>4`

`<=>sqrtx^2>sqrt4`

`<=>|x|>2`

`<=>` \(\left[ \begin{array}{l}x>2\\x<-2\end{array} \right.\) 

`b)x^2<9`

`<=>\sqrtx^2<sqrt9`

`<=>|x|<3`

`<=>-3<x<3`

`c)(x-1)^2>=4`

`<=>\sqrt{(x-1)^2}>=sqrt4`

`<=>|x-1|>=2`

`<=>` \(\left[ \begin{array}{l}x-1 \ge 2\\x-1 \le -2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x \ge 3\\x \le -1\end{array} \right.\) 

`d)(1-2x)^2<=0,09`

`<=>\sqrt{(1-2x)^2}<=sqrt{0,09}`

`<=>|2x-1|<=0,3`

`<=>-0,3<=2x-1<=0,3`

`<=>0,7<=2x<=1,3`

`<=>0,35<=x<=0,65`

`e)x^2+6x-7>0`

`<=>x^2-x+7x-7>0`

`<=>x(x-1)+7(x-1)>0`

`<=>(x-1)(x+7)>0`

TH1:

\(\left[ \begin{array}{l}x-1>0\\x+7>0\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x>1\\x>-7\end{array} \right.\) 

`<=>x>1`

TH2"

\(\left[ \begin{array}{l}x-1<0\\x+7<0\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x<1\\x<-7\end{array} \right.\) 

`<=>x<-7`

`f)x^2-x<2`

`<=>x^2-x-2<0`

`<=>x^2-2x+x-2<0`

`<=>x(x-2)+x-2<0`

`<=>(x-2)(x+1)<0`

`<=>` \(\begin{cases}x-2<0\\x+1>0\\\end{cases}\)

`<=>` \(\begin{cases}x<2\\x>-1\\\end{cases}\)

`<=>-1<x<2`

20 tháng 6 2021

a) x2 > 4

<=> \(\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)

b) \(x^2< 9\)

<=> \(-3< x< 3\)

c) \(\left(x-1\right)^2\ge4\)

<=> \(\left[{}\begin{matrix}x-1\ge2< =>x\ge3\\x-1\le-2< =>x\le-1\end{matrix}\right.\)

d) \(\left(1-2x\right)^2\le0,09\)

<=> \(-0,3\le1-2x\le0,3\)

<=> \(1,3\ge2x\ge0,7\)

<=> \(0,65\ge x\ge0,35\)

e) \(x^2+6x-7>0\)

<=> \(\left(x+7\right)\left(x-1\right)>0\)

<=> \(\left[{}\begin{matrix}x-1>0< =>x>1\\x+7< 0< =>x< -7\end{matrix}\right.\)

f) \(x^2-x< 2\)

<=> \(x^2-x-2< 0\)

<=> \(\left(x-2\right)\left(x+1\right)< 0\)

<=> \(\left\{{}\begin{matrix}x+1>0< =>x>-1\\x-2< 0< =>x< 2\end{matrix}\right.\)

<=> -1 < x < 2

g) \(4x^2-12x\le\dfrac{-135}{16}\)

<=> \(64x^2-192x+135\le0\)

<=> (8x - 15)(8x - 9) \(\le0\)

<=> \(\left\{{}\begin{matrix}8x-15\le0< =>x\le\dfrac{15}{8}\\8x-9\ge0< =>x\ge\dfrac{9}{8}\end{matrix}\right.\)

<=> \(\dfrac{9}{8}\le x\le\dfrac{15}{8}\)

14 tháng 2 2018

Đáp án B

Phương trình 7 x 2 - 12 x + 4 = 0 có a = 7; b' = -6; c = 4 suy ra:

Δ ' = ( b ' ) 2 - a c = ( - 6 ) 2 - 4 . 7 = 8 > 0

Nên phương trình có hai nghiệm phân biệt.