Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(Q=2x^2-6x\)
\(Q=2\left(x^2-3x\right)\)
\(Q=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)-\frac{9}{2}\)
\(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu = xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Max Q = -9/2 khi x = 3/2
ta có hệ pt
<=>\(\hept{\begin{cases}x^3-3x-2=y-2\\y^3-3y-2=z-2\\z^3-3z-2=2-x\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x+1\right)^2=y-2\\\left(y-2\right)\left(y+1\right)^2=z-2\\\left(z-2\right)\left(z+1\right)^2=2-x\end{cases}}}\)
nhân từng vế của 3 pt, ta có
\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=-\left(x-2\right)\left(y-2\right)\left(z-2\right)\)
<=>\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\left[\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+1\right]=0\)
<=> x=2 hoặc y=2 hoặc z=2
đến đây bạn tự thay vào và giai tiếp nhé
7,
\(\Leftrightarrow x=\sqrt{x+2}\left(\frac{\sqrt{x}}{1+\sqrt{1-\sqrt{x}}}\right)^2\)
\(\Leftrightarrow x=\frac{\sqrt{x+2}.x}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}\Leftrightarrow\frac{\sqrt{x+2}}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}=1\)
đến đây tự làm
7 đề như tớ
8. (x-1)^2 +\(x\sqrt{x-\frac{1}{x}}\)
9. \(\sqrt{1+x}+\sqrt{3-3x}=\sqrt{4x^2+1}\)
2x + 6x = 32
8x = 32
-> x = 4
2x+6x=32
=>8x=32
=>x=4
ủng hộ nhé mn