Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; Ta có: 2x=3y
nên x/3=y/2
=>x/21=y/14
Ta có: 5y=7z
nên y/7=z/5
=>y/14=z/10
=>x/21=y/14=z/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{15}=2\)
Do đó: x=42; y=28; z=20
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{-x+y+z}{-\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-120}{-\dfrac{4}{3}}=90\)
Do đó: x=165; y=20; z=25
c: x/3=y/4
nên x/15=y/20
y/5=z/7
nên y/20=z/28
=>x/15=y/20=z/28
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)
Do đó: x=30; y=40; z=56
b) \(\frac{x}{2}\)= \(\frac{y}{3}\) ; \(\frac{y}{5}\)= \(\frac{z}{7}\)và x+y+z=92
\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\)và x+y+z=92
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)và x+y+z=92
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}\)=\(\frac{92}{46}=2\)
Suy ra \(\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=2\Rightarrow z=42\)
Vậy ...
câu dưới tương tự nha bn
hoặc bn vào các câu hỏi tương tự ấy có nhiều bài dạng như vầy lắm
a)\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{f+5}{6}\)=> \(\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4f+20}{24}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4f+20}{24}\)\(=\frac{2x+2+3y+9+4f+20}{4+12+24}\)\(=\frac{2x+3y+4f+31}{40}\)\(=\frac{9+31}{40}=\frac{40}{40}=1\)
=> \(x=1.2-1;y=4.1-3;f=1.6-5\)
=>\(x=y=f=1\)
b)Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{f-3}{5}\)\(=\frac{x-1+y-2+f-3}{3+4+5}=\frac{x+y+f-6}{12}\)\(=\frac{30-6}{24}=\frac{24}{24}=1\)
=> \(x=1.3+1;y=1.4+2;f=1.5+3\)
=>\(x=4;y=6;f=8\)
1) Theo tính chất của dãy tỉ số = nhau, ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{7}{-7}=-1\)
=> x = 2 . (-1) = -2
x = (-1) . (-5) = 5
2) Theo tính chất của dãy tỉ số = nhau, ta có:
\(\frac{x}{-2}=\frac{y}{5}=\frac{x+y}{\left(-2\right)+5}=\frac{30}{3}=10\)
=> x = 10 . 5 = 50
x = 10 . (-2) = 20
câu 1:
2x=3y =>\(\dfrac{x}{3}=\dfrac{y}{2}\) (1)
5y=7z =>\(\dfrac{y}{7}=\dfrac{z}{5}\) (2)
Từ (1) và (2) suy ra
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)=\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Dựa vào tính chất dãy tỉ số bằng nhau
Suy ra \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)=\(\dfrac{3x+5z-7y}{63+50-98}=\dfrac{30}{15}=2\)
\(\dfrac{x}{21}=2\) =>x=2.21=42
\(\dfrac{y}{14}=2\) =>y=2.14=28
\(\dfrac{z}{10}=2\) =>z=2.10=20
Vậy x=42;y=28 và z=20
Câu 2:
\(\dfrac{x^2}{5}=\dfrac{y^2}{4}\)
Dựa vào tính chất dãy tỉ số bằng nhau
Suy ra \(\dfrac{x^2-y^2}{5-4}\) =\(\dfrac{1}{1}=1\)
\(\dfrac{x^2}{5}=1\) =>x2=1.5=5 =>x=\(\sqrt{5}\) hay -\(\sqrt{5}\)
\(\dfrac{y^2}{4}=1\) => y2=1 => y=1 hay -1
a và b chắc của lớp 9 nhỉ
\(x^2-2x+2=x^2-x-x+2\)
\(=x\left(x-1\right)-\left(x-1\right)+1\)
\(=\left(x-1\right)^2+1\)
\(9x^2-6x+5=9\left(x^2-\frac{2}{3}x+\frac{5}{9}\right)\)
\(=9\left(x^2-\frac{1}{3}x-\frac{1}{3}x+\frac{5}{9}\right)\)
\(=9\left(x^2-\frac{1}{3}x-\frac{1}{3}x+\frac{1}{9}+\frac{4}{9}\right)\)
\(=9\left[x\left(x-\frac{1}{3}\right)-\frac{1}{3}\left(x-\frac{1}{3}\right)+\frac{4}{9}\right]\)
\(=9\left[\left(x-\frac{1}{3}\right)^2+\frac{4}{9}\right]\)
\(=9\left(x-\frac{1}{3}\right)^2+4\)
Cái kia tương tự.