Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> 2.(x2 + 2x +1) + 3.y2 = 21
<=> 2.(x+1)2 + 3. y2 = 21
Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 \(\le\) 21 và (x+1)2 là số chính phương
=> (x+1)2 =0 hoặc 9
+) x + 1 = 0 => x = -1 => y 2 = 7 => loại
+) (x+1)2 = 9 => y2 = 1
=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4
y2 = 1 => y = 1 hoặc y = -1
Vậy....
Theo hệ thức Vi-et ta có:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-1\end{matrix}\right.\)
Khi đó:
\(y_1+y_2=2x_1-x_2+2x_2-x_1=x_1+x_2=4\)
\(y_1y_2=\left(2x_1-x_2\right)\left(2x_2-x_1\right)=4x_1x_2-2x_1^2-2x_2^2+x_1x_2=5x_1x_2-2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5-2\left(4^2-2.\left(-1\right)\right)=-41\)
Theo Vi-et đảo thì \(y_1,y_2\) là nghiệm phương trình bậc 2 ẩn \(y\): \(y^2-4y-41=0\)
2x2+(2m−1)x+m−1=02x2+(2m−1)x+m−1=0
Δ=(2m−1)2−8(m−1)Δ=(2m−1)2−8(m−1)
=4m2−12m+9=(2m−3)2=4m2−12m+9=(2m−3)2
phương trình có 2 nghiệm phân biệt khi 2m−3≠02m−3≠0
xét 2 trường hợp
*TH1:2m−3>0⇔m>322m−3>0⇔m>32 (1)
x1=−(2m−1)−(2m−3)4=−m+1x1=−(2m−1)−(2m−3)4=−m+1
x2=−(2m−1)+2m−34=−12x2=−(2m−1)+2m−34=−12
3x1−4x2=−3m+3+2=−3m+5=113x1−4x2=−3m+3+2=−3m+5=11
⇔m=−2⇔m=−2 loại vì không thỏa đk (1)
*TH2:2m−3<0⇔m<322m−3<0⇔m<32 (2)
x1=−12x1=−12
x2=−m+1x2=−m+1
3x1−4x2=−32+4m−4=4m−112=113x1−4x2=−32+4m−4=4m−112=11
⇔m=338⇔m=338 loại vì không thỏa đk (2)
Vậy không tồn tại m để phương trình có 2 nghiệm thỏa mãn đk trên
2x-4x+1=0
<=> -2x+1=0
<=> -2x=-1
<=>x=1/2