Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x=3y\)=> \(\frac{x}{3}=\frac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{10}{5}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{2}=2\end{cases}}\)=> \(\hept{\begin{cases}x=6\\y=4\end{cases}}\)
\(3x=4y\)=> \(\frac{x}{4}=\frac{y}{3}\)=> \(\frac{2x}{8}=\frac{3y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{3y}{9}=\frac{2x+3y}{8+9}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{4}=2\\\frac{y}{3}=2\end{cases}}\)=> \(\hept{\begin{cases}x=8\\y=6\end{cases}}\)
\(x:2=y:(-5)\)=> \(\frac{x}{2}=\frac{y}{-5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left[-5\right]}=\frac{7}{7}=1\)
=> \(\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{-5}=1\end{cases}}\)=> \(\hept{\begin{cases}x=2\\y=-5\end{cases}}\)
\(\frac{x}{6}=\frac{y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{x-y}{6-9}=\frac{30}{-3}=-10\)
\(\Rightarrow\frac{x}{6}=-10\Rightarrow x=-60\)
\(\frac{y}{9}=-10\Rightarrow y=-90\)
1. 2x = 3y-2
2x+2x = 3y
4x = 3y
=> \(\frac{x}{3}=\frac{y}{y}\Rightarrow\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\frac{x}{3}=2\Rightarrow x=6\)
=> \(\frac{y}{4}=2\Rightarrow y=8\)
a)Ta có: x+y = 10
hay x+x = 10 ( vì x=y)
2x = 10
x = 10 : 2
x = 5
b) Ta có: 2x + 3y = 180
hay 2x + 3x = 180 ( vì x = y)
5x = 180
x= 180 : 5
x = 36
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\)Theo tc dãy tỉ số bằng nhau ta có
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{10}{5}=2\Rightarrow x=6;y=4\)
Ta có : 2x = 3y => \(\dfrac{x}{3}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{10}{5}=2\) ( do x + y = 10 )
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.2=4\end{matrix}\right.\)