Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x\(x\ne\)1,-1
a) pt <=> \(\left(\frac{x}{x-1}+\frac{x}{x+1}\right)^2-\frac{2x^2}{x^2-1}=\frac{10}{9}\)
<=> \(\frac{4x^4}{\left(x^2-1\right)^2}-\frac{2x^2}{x^2-1}=\frac{10}{9}\)
Đặt: t=\(\frac{2x^2}{x^2-1}\)
Pt trở thành: \(t^2-t-\frac{10}{9}=0\)\(\Leftrightarrow9t^2-9t-10=0\)<=> \(\orbr{\begin{cases}t=-\frac{1}{3}\\t=\frac{5}{6}\end{cases}}\)
Nếu: \(\frac{2x^2}{x^2-1}=-\frac{1}{3}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{1}{7}}\\x=-\sqrt{\frac{1}{7}}\end{cases}\left(tm\right)}\)
Nếu: \(\frac{2x^2}{x^2-1}=\frac{5}{6}\)(vô nghiệm)
Vậy nghiệm là ...
http://vchat.vn/pictures/service/2017/02/iit1486637364.PNG
Lời giải:
Áp dụng BĐT AM-GM ta có:
$\frac{x^3}{(y+2z)^2}+\frac{y+2z}{27}+\frac{y+2z}{27}\geq 3\sqrt[3]{\frac{x^3}{(y+2z)^2}.\frac{y+2z}{27}.\frac{y+2z}{27}}=\frac{x}{3}$
$\frac{y^3}{(z+2x)^2}+\frac{z+2x}{27}+\frac{z+2x}{27}\geq \frac{y}{3}$
$\frac{z^3}{(x+2y)^2}+\frac{x+2y}{27}+\frac{x+2y}{27}\geq \frac{z}{3}$
Cộng theo vế các BĐT trên và thu gọn thì:
$\sum \frac{x^3}{(y+2z)^2}+\frac{x+y+z}{9}\geq \frac{x+y+z}{3}$
$\Rightarrow \sum \frac{x^3}{(y+2z)^2}\geq \frac{2}{9}(x+y+z)$ (đpcm)
Dấu "=" xảy ra khi $x=y=z$
\(\left(6x^3-7x^2-x+2\right):\left(2x+1\right).\)
\(=\left(x+\frac{1}{2}\right).\left(x-1\right).\left(x-\frac{2}{3}\right):\left(x+\frac{1}{2}\right)\)
\(=\left(x-1\right).\left(x-\frac{2}{3}\right)\)
Vì (2x+1)^2 >0 ; (3y+5)2>0
suy ra 2x +1 =0
và 3y +5 =0
=> x = -1/2 ; y = -5/3
Ta có: \(\hept{\begin{cases}\left|2x-3\right|\ge0\\\left(y-2\right)^{500}\ge0\\\left(2z+3\right)^{150}\ge0\end{cases}}\)
\(\Rightarrow\left|2x-3\right|+\left(y-2\right)^{500}+\left(2z+3\right)^{150}\ge0\)
Mà theo đề \(\left|2x-3\right|+\left(y-2\right)^{500}+\left(2z+3\right)^{150}\le0\)
nên\(\left|2x-3\right|+\left(y-2\right)^{500}+\left(2z+3\right)^{150}=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-3=0\\y-2=0\\2z+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=2\\x=\frac{-3}{2}\end{cases}}\)