Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và 2x+3y+z=49
áp dụng dãy tí số = nhau
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6+z-3}{4+9+4}=\dfrac{2x+3y+z-12}{17}=\dfrac{37}{17}\)
\(\Leftrightarrow\dfrac{x-1}{2}=\dfrac{37}{17}\Rightarrow x=\dfrac{91}{17}\)
tương tự với y và z nha
Tìm các số x, y, z biết:
a) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và \(x+y+z=49\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{x-1+y-2+z-3}{2+3+4}=\dfrac{49-6}{9}=\dfrac{43}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{43}{9}\\\dfrac{y-2}{3}=\dfrac{43}{9}\\\dfrac{z-3}{4}=\dfrac{43}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=\dfrac{86}{9}\\y-2=\dfrac{43}{3}\\z-3=\dfrac{172}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{95}{9}\\y=\dfrac{49}{3}\\z=\dfrac{199}{9}\end{matrix}\right.\)
Vậy \(x=\dfrac{95}{9};y=\dfrac{49}{3};z=\dfrac{199}{9}\)
b) \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\) và \(x+y+z=49\)
Đặt \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2x=3k\\3y=4k\\4z=5k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3k}{2}\\y=\dfrac{4k}{3}\\z=\dfrac{5k}{4}\end{matrix}\right.\)
Theo giả thiết ta có: \(x+y+z=49\)
\(\Leftrightarrow\dfrac{3k}{2}+\dfrac{4k}{3}+\dfrac{5k}{4}=49\)
\(\Leftrightarrow\dfrac{18k+16k+15k}{12}=\dfrac{588}{12}\)
\(\Leftrightarrow18k+16k+15k=588\)
\(\Leftrightarrow49k=588\)
\(\Leftrightarrow k=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3.12}{2}=18\\y=\dfrac{4.12}{3}=16\\z=\dfrac{5.12}{4}=15\end{matrix}\right.\)
Vậy \(x=18;y=16;z=15\)
Ta có
(2x+5/4)3=-27=-33
=> 2x+5/4=-3
=>2x=-3-5/4
=>x=-17/4:2=-17/2
KL
(3-4x/5)2=100/49=(10/7)2
=>3-4x/5=10/7
=>3-4x=50/7
=>4x=-29/7
=>x=-29/28
KL
1, \(\left(x+7\right)\left(3x-1\right)=49-x^2\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)=\left(7-x\right)\left(7+x\right)\)
\(\Leftrightarrow3x-1=7-x\)
\(\Leftrightarrow4x=8\Leftrightarrow x=2\)
Vậy x = 2
2, \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
Vậy x = -2 hoặc x = 0
3, \(\left(1-2x\right)^2-\left(x+3\right)^2+3\left(x+1\right)\left(1-x\right)=8\)
\(\Leftrightarrow\left(1-2x-x-3\right)\left(1-2x+x+3\right)+3\left(x-x^2+1-x\right)=8\)
\(\Leftrightarrow\left(-2-3x\right)\left(4-x\right)-3x^2+3=8\)
\(\Leftrightarrow-8+2x-12x+3x^2-3x^2=5\)
\(\Leftrightarrow-10x=13\)
\(\Leftrightarrow x=-1,3\)
Vậy x = -1,3
4, \(\left(x-3\right)^2-\left(x+3\right)^2=24\)
\(\Leftrightarrow\left(x-3-x-3\right)\left(x-3+x+3\right)=24\)
\(\Leftrightarrow-6.2x=24\)
\(\Leftrightarrow x=-2\)
Vậy x = -2
\(\left(2x-\dfrac{3}{2}\right)^2=\dfrac{49}{81}\\ \Rightarrow\left(2x-\dfrac{3}{2}\right)^2=\left(\dfrac{7}{9}\right)^2\\ \Rightarrow2x-\dfrac{3}{2}=\pm\dfrac{7}{9}\\ \Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{2}=\dfrac{7}{9}\\2x-\dfrac{3}{2}=-\dfrac{7}{9}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=\dfrac{41}{18}\\2x=\dfrac{13}{18}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{41}{36}\\x=\dfrac{13}{36}\end{matrix}\right.\)
(2x-3/2)2=49/81=(7/9)2
=>2x-3/2=7/9 hoặc 2x-3/2=-7/9
=>x=41/36 hoặc x=13/36.
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
a) \(\left(2x-1\right)^{10}=49^5\Leftrightarrow\left(2x-1\right)^{10}=7^{10}\Leftrightarrow\orbr{\begin{cases}2x-1=7\Rightarrow x=4\\2x-1=-7\Rightarrow x=-3\end{cases}}\)
PT có 2 nghiệm: x = -3 và x = 4.
b) \(3^x+2+3x=810\Leftrightarrow3^x+3x=808\)(2)
x = 0 không phải là nghiệm của (2)
VT(2) chia hết cho 3 với mọi x khác 0; => PT vô nghiệm
Bài giải
a, Ta có :
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-8}{9}=\frac{45}{9}=5\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}x=5\cdot2+1=11\\y=5\cdot3+2=17\\z=5\cdot4+3=23\end{cases}}\)
b, Ta có :
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49\cdot\frac{12}{49}=12\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\text{ }\hept{\begin{cases}x=12\cdot3\text{ : }2=18\\y=12\cdot4\text{ : }3=16\\z=12\cdot5\text{ : }4=15\end{cases}}\)
MIK LM CÂU KHÓ NHẤT NHÁ!
c) Có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.\frac{3}{2}=18\\y=12.\frac{4}{3}=16\\z=\frac{5}{4}=15\end{matrix}\right.\)
Vậy...
a) Ta có: \(\frac{1}{2}x=\frac{3}{4}z=\frac{2}{3}y.\)
=> \(\frac{x}{2}=\frac{3z}{4}=\frac{2y}{3}\)
=> \(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}\) và \(x-y=15.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\end{matrix}\right.\)
Vậy \(\left(x;z;y\right)=\left(60;40;45\right).\)
Chúc bạn học tốt!
Lời giải:
$(2x-3)^2=49=7^2=(-7)^2$
$\Rightarrow 2x-3=7$ hoặc $2x-3=-7$
$\Rightarrow x=5$ hoặc $x=-2$
(2x-3)2=49
(2x-3)2=72
2x-3=7
2x=7+3
2x=10
x=10:2
x=5
NHớ tick mik nha