Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: \(2x+x\left(x-5\right)=3x^2-x\)
\(\Leftrightarrow2x+x^2-5x-3x^2+x=0\)
\(\Leftrightarrow-2x^2-2x=0\)
\(\Leftrightarrow-2x\left(x+1\right)=0\)
Vì -2≠0
nên \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: x∈{0;-1}
2) Ta có: \(15-5\left(1-2x\right)=12-x\)
\(\Leftrightarrow15-5+10x-12+x=0\)
\(\Leftrightarrow11x-2=0\)
\(\Leftrightarrow11x=2\)
hay \(x=\frac{2}{11}\)
Vậy: \(x=\frac{2}{11}\)
3) Ta có: \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}-5=0\)
\(\Leftrightarrow\frac{-13}{3}-\frac{4}{3}x=0\)
\(\Leftrightarrow\frac{4}{3}x=\frac{-13}{3}\)
hay \(x=\frac{-13}{3}:\frac{4}{3}=\frac{-13}{4}\)
Vậy: \(x=\frac{-13}{4}\)
4) Ta có: \(\left|x-\frac{4}{5}\right|=\frac{3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{5}\\x-\frac{4}{5}=\frac{-3}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{5}\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{5};\frac{7}{5}\right\}\)
1. \(2x+x\left(x-5\right)=3x^2-x\)
\(\Leftrightarrow2x+x^2-5x=3x^2-x\)
\(\Leftrightarrow\left(2x-5x+x\right)+\left(x^2-3x^2\right)=0\)
\(\Leftrightarrow-2x-2x^2=0\)
\(\Leftrightarrow-2x\left(1+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\1+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
2. \(15-5\left(1-2x\right)=12-x\)
\(\Leftrightarrow15-5+10x=12-x\)
\(\Leftrightarrow\left(15-5-12\right)+\left(10x+x\right)=0\)
\(\Leftrightarrow-2+11x=0\)
\(\Leftrightarrow11x=2\Leftrightarrow x=\frac{2}{11}\)
3. \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\Leftrightarrow\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}-5\right)-\left(\frac{1}{3}x+x\right)=0\)
\(\Leftrightarrow-\frac{13}{3}-\frac{4}{3}x=0\)
\(\Leftrightarrow-\frac{4}{3}x=\frac{13}{3}\Leftrightarrow x=-\frac{13}{4}\)
4. \(\left|x-\frac{4}{5}\right|=\frac{3}{5}\)
\(\Rightarrow x-\frac{4}{5}=-\frac{3}{5}\) hoặc \(x-\frac{4}{5}=\frac{3}{5}\)
\(TH1:x-\frac{4}{5}=-\frac{3}{5}\Rightarrow x=\frac{1}{5}\)
\(TH2:x-\frac{4}{5}=\frac{3}{5}\Rightarrow x=\frac{7}{5}\)
1, \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=5\)
\(\Leftrightarrow4x^2+12x+9-4x^2-1=5\)
\(\Leftrightarrow12x=-3\)
\(\Leftrightarrow x=\dfrac{-1}{4}\)
Vậy \(x=\dfrac{-1}{4}\)
2, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+5\right)=20\)
\(\Leftrightarrow x^3+27-x^3-5x=20\)
\(\Leftrightarrow5x=7\)
\(\Leftrightarrow x=\dfrac{7}{5}\)
Vậy...
5, \(x^2-9+5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
Vậy...
1) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=5\) (1)
\(\Leftrightarrow4x^2+12x+9-\left(4x^2-1\right)=5\)
\(\Leftrightarrow4x^2+12x+9-4x^2+1=5\)
\(\Leftrightarrow12x+10=5\)
\(\Leftrightarrow12x=5-10\)
\(\Leftrightarrow12x=-5\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-\dfrac{5}{12}\right\}\)
2) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+5\right)=20\) (2)
\(\Leftrightarrow x^3+27-x^3-5x=20\)
\(\Leftrightarrow27-5x=20\)
\(\Leftrightarrow-5x=20-27\)
\(\Leftrightarrow-5x=-7\)
\(\Leftrightarrow x=\dfrac{7}{5}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{7}{5}\right\}\)
3) \(\left(x+2\right)^3-x\left(x^2+6x\right)=15\) (3)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3-6x^2=15\)
\(\Leftrightarrow12x+8=15\)
\(\Leftrightarrow12x=15-8\)
\(\Leftrightarrow12x=7\)
\(\Leftrightarrow x=\dfrac{7}{12}\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{7}{12}\right\}\)
4) \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+10\right)\left(x-1\right)=7\) (4)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x\left(x+10\right)\right)=7\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2-10x\right)=7\)
\(\Leftrightarrow\left(x-1\right)\left(-9x+1\right)=7\)
\(\Leftrightarrow-9x^2+x+9x-1=7\)
\(\Leftrightarrow-9x^2+10-1=7\)
\(\Leftrightarrow-9x^2+10x-1-7=0\)
\(\Leftrightarrow-9x^2+10x-8=0\)
\(\Leftrightarrow9x^2-10x+8=0\)
\(\Leftrightarrow x\notin R\)
5) \(x^2-9+5\left(x+3\right)=0\) (5)
\(\Leftrightarrow x^2-9+5x+15=0\)
\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+1}{2}\\x=\dfrac{-5-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
Vậy tập nghiệm phương trình (5) là \(S=\left\{-3;-2\right\}\)
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
1: Trường hợp 1: x<-2
Pt sẽ là -x-2+5-x=7
=>-2x+3=7
=>-2x=4
hay x=-2(loại)
Trường hợp 2: -2<=x<5
Pt sẽlà x+2+5-x=7
=>7=7(luôn đúng)
Trường hợp 3: x>=5
Pt sẽ là x+2+x-5=7
=>2x-3=7
=>x=5(nhận)
4: \(\left|x^2-2x\right|=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(x^2-2x\right)^2=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-2x-x\right)\left(x^2-2x+x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-3x\right)\left(x^2-x\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;1;3\right\}\)
5: Ta có: \(\left|2x+3\right|=x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(2x+3+x+2\right)\left(2x+3-x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(3x+5\right)\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{3};-1\right\}\)
6: |5x-4|=|x+2|
=>5x-4=x+2 hoặc 5x-4=-x-2
=>4x=6 hoặc 6x=2
=>x=3/2 hoặc x=1/3
1)
2x.(x-2) - x.(2x+1) = 3
=> 2x2 - 4x - 2x2 - x = 3
=> (2x2 - 2x2 ) - (4x+x) = 3
=> -5x = 3
=> x = \(\dfrac{-3}{5}\)
2) (2x-1).(x-2) - (x+3).(2x-7) = 3
=> 2x2 - 4x - x + 2 - 2x2 + 7x - 6x + 21 = 3
=> (2x2 - 2x2) - (4x + 6x + x - 7x) + 2 + 21 = 3
=> -4x = -20
=> x = -20 : (-4)
=> x = 5
3) (x - 5).(-x + 4) - (x - 1).(x + 3) = -2x2
=> Bạn tách tương tự như mấy câu 2 nhé! Nếu không làm được thì bảo mình
(2x-3)-(x-5)=(x+2)-(x-1)
\(\Leftrightarrow\)2x-3-x+5=x+2-x+1
\(\Rightarrow\)x+2=3
\(\Rightarrow\)x=1
(2x-3)-(x-5)=(x+2)-(x-1) => 2x-3-x+5 = x+2-x+1 x+2 =3 x =1