K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

Câu 1:

\(2x^3-3x^2+x+a\)

\(=2\left(x^3-6x^2+12x-8\right)+9\left(x^2-4x+4\right)+13\left(x-2\right)+\left(6+a\right)\)

\(=2\left(x-2\right)^3+9\left(x-2\right)^2+13\left(x-2\right)+\left(6+a\right)\)chia hết cho \(x-2\)khi và chỉ khi :

\(6+a=0\Leftrightarrow a=-6\). Vậy \(a=-6\).

Câu 2:

\(\left(x+1\right)\left(2x-x\right)-\left(3x+5\right)\left(x+2\right)=4x^2+1\)

\(\Leftrightarrow x^2+x-\left(3x^2+11x+10\right)=-4x^2+1\)

\(\Leftrightarrow x^2+x-3x^2-11x-10+4x^2-1=0\)

\(\Leftrightarrow2x^2-10x-11=0\)

\(\Delta'=\left(-5\right)^2-2\left(-11\right)=47>0\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:

\(x=\frac{5+\sqrt{47}}{2}\)hoặc \(x=\frac{5-\sqrt{47}}{2}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{5+\sqrt{47}}{2};\frac{5-\sqrt{47}}{2}\right\}\)

18 tháng 1 2022

một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?

a) Ta có: \(5x\left(x+1\right)-5\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[5x-5\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(5x-5x+10\right)=0\)

\(\Leftrightarrow10\left(x+1\right)=0\)

\(10\ne0\)

nên x+1=0

hay x=-1

Vậy: x=-1

b) Ta có: \(\left(4x+1\right)\left(x-2\right)-\left(2x-3\right)=4\)

\(\Leftrightarrow4x^2-8x+x-2-2x+3-4=0\)

\(\Leftrightarrow4x^2-9x-3=0\)

\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{9}{4}+\frac{81}{16}-\frac{129}{16}=0\)

\(\Leftrightarrow\left(2x-\frac{9}{4}\right)^2=\frac{129}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{9}{4}=\frac{\sqrt{129}}{4}\\2x-\frac{9}{4}=-\frac{\sqrt{129}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\frac{9+\sqrt{129}}{4}\\2x=\frac{9-\sqrt{129}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9+\sqrt{129}}{8}\\x=\frac{9-\sqrt{129}}{8}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{9+\sqrt{129}}{8};\frac{9-\sqrt{129}}{8}\right\}\)

c) Ta có: \(2x^3-18x=0\)

\(\Leftrightarrow2x\left(x^2-9\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)

\(2\ne0\)

nên \(\left[{}\begin{matrix}x=0\\x+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=3\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-3;3\right\}\)

d) Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)

\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)

\(\Leftrightarrow-13x-2=11\)

\(\Leftrightarrow-13x=13\)

hay x=-1

Vậy: x=-1

e) Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)

\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^3+8\right)=3-3x^2\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8-3+3x^2=0\)

\(\Leftrightarrow3x-12=0\)

\(\Leftrightarrow3x=12\)

hay x=4

Vậy: x=4

f) Ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-1\)

\(\Leftrightarrow6x^2-\left(6x^2-4x+15x-10\right)+1=0\)

\(\Leftrightarrow6x^2-6x^2+4x-15x+10+1=0\)

\(\Leftrightarrow-11x+11=0\)

\(\Leftrightarrow-11x=-11\)

hay x=1

Vậy: x=1

26 tháng 8 2020

câu b có cách giải khác không ạ?

1 tháng 4 2020

b) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=\frac{x+7}{12}\)

<=> \(\frac{13\left(x+1\right)}{12}-\frac{5x+3}{6}=\frac{x+7}{12}\)

<=> 13(x + 1) - 2(5x + 3) = x + 7

<=> 13x + 13 - 10x - 6 = x + 7

<=> 3x + 7 = x + 7

<=> 3x + 7 - x = 7

<=> 2x + 7 = 7

<=> 2x = 7 - 7

<=> 2x = 0

<=> x = 0

c) 2x + 4(x - 2) = 5

<=> 2x + 4x - 8 = 5

<=> 6x - 8 = 5

<=> 6x = 5 + 8

<=> 6x = 13

<=> x = 13/6

25 tháng 12 2022

\((2x-1)^2+(x+3)^2-5(x+7)(x-7)=0\)

\(< =>4x^2-4x+1+x^2+6x+9-5\left(x^2-7^2\right)=0\\ < =>4x^2-4x+1+x^2+6x+9-5x^2+245=0\\ < =>2x+255=0\\ < =>2x=-255=>x=\dfrac{-255}{2}\)

Vậy \(x=\dfrac{-255}{2}\)

25 tháng 12 2022

\(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

\(\Rightarrow2x+255=0\Rightarrow2x=-255\Rightarrow x=-\dfrac{255}{2}\)

6 tháng 7 2019

B2

( a3 + a2b + ab2 + b3 ).( a - b ) = a4 - b4

[( a3 + b3 + ab.( a + b )].( a - b ) = a4 - b4

[( a + b ).( a2 - ab + b2 ) + ab.( a + b )].( a - b ) = a4 - b4

 ( a + b ).( a2 - ab + b2 + ab ).( a - b ) = a4 - b4

( a + b ).( a2 + b2 ).( a  -  b ) = a4 - b4

 ( a2 - b2 ).( a2 + b2 ) = a4 - b4

 a4 - b4 = a4 - b4  ( đpcm )

\(1,\)

\(2x\left(x-3\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)

\(2,\)

\(3x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

\(3,\)

\(x^4-x^2=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

\(4,\)

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(5,\)

\(x\left(x+6\right)-10\left(x-6\right)=0\)

\(\Leftrightarrow x^2+6x-10x+60=0\)

\(\Leftrightarrow x^2-4x+60=0\)

\(\Leftrightarrow x^2-4x+4+56=0\)

\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)

=> Phương trình vô nghiệm