Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\left(\dfrac{1}{x}-3\right)\left(\dfrac{2}{3}x+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-3=0\\\dfrac{2}{3}x+\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=3\\\dfrac{2}{3}x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy ...
b) \(\left|2x\right|-\left|-2,5\right|=\left|-7,5\right|\)
\(\Leftrightarrow\left|2x\right|-2,5=7,5\)
\(\Leftrightarrow\left|2x\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vây ...
c) \(x-7\ge0\Leftrightarrow x\ge7\)
\(\left|1-3x\right|=x-7\)
\(\Leftrightarrow\left[{}\begin{matrix}1-3x=x-7\\1-3x=7-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x-x=-7-1\\-3x+x=7-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-4x=-8\\-2x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy ...
\(\left|2,5-x\right|=7,5\)
\(\orbr{\begin{cases}2,5-x=7,5\\2,5-x=-7,5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2,5-7,5\\x=2,5+7,5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=10\end{cases}}\)
\(Vayx\in\left\{-5;10\right\}\)
\(1,6-\left|x-0,2\right|=0\)
\(\left|x-0,2\right|=1,6\)
\(\orbr{\begin{cases}x-0,2=1,6\\x-0,2=-1,6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1,6+0,2\\x=-1,6+0,2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1,8\\x=-1,4\end{cases}}\)
{ x2 - [ 62 - ( 82 - 9.7)3 - 7.5]3 - 5.3 }3 = 1
{ x2 + [ 36 - (64 - 63)3 - 35]3 - 15}3 = 1
[ x2 - ( 36 - 13 - 35 ) - 15 ]3 = 1
[ x2 - ( 36 - 1 - 35 ) - 15]3 = 1
[ x2 - ( 35 - 35 ) - 15]3 = 1
[ x2 - 0 - 15]3 = 1
( x2 - 15 )3 = 1
<=> ( x2 - 15)3 = 13
=> x2 - 15 = 1
<=> x2 = 16
=> x = 4
Có: \(\hept{\begin{cases}\left|2x+2,5\right|\ge2x+2,5\\\left|2x-3\right|\ge3-2x\end{cases}}\)với mọi x
\(\Rightarrow D=\left|2x+2,5\right|+\left|2x-3\right|\ge\left(2x+2,5\right)+\left(3-2x\right)\)
\(\Rightarrow D\ge5,5\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+2,5\ge0\\2x-3\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x\ge\frac{-5}{2}\\2x\le3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge\frac{-5}{4}\\x\le\frac{3}{2}\end{cases}}\)\(\Rightarrow\frac{-5}{4}\le x\le\frac{3}{2}\)
Vậy \(D_{Min}=5,5\) khi \(\frac{-5}{4}\le x\le\frac{3}{2}\)
\(\left|2x\right|-\left|-2,5\right|=\left|-7,5\right|\)
\(\left|2x\right|-2,5=7,5\)
|2x| = 7,5 + 2,5
|2x | = 10
TH1: 2x = 10
x=5
TH2: 2x= -10
x = -5
KL: x = 5 hoặc x = -5
\(\left|2x\right|-\left|-2\cdot5\right|=\left|-7\cdot5\right|\)
\(\Rightarrow\left|2x\right|-\left|-10\right|=\left|-35\right|\)
\(\Rightarrow\left|2x\right|-10=35\)
\(\Rightarrow\left|2x\right|=45\)
\(\Rightarrow\orbr{\begin{cases}2x=45\\2x=-45\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=22,5\\x=-22,5\end{cases}}\)