K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

\(\hept{\begin{cases}2x+\frac{1}{y}=\frac{3}{x}\\2y+\frac{1}{x}=\frac{3}{y}\end{cases}\Rightarrow\hept{\begin{cases}2x+\frac{1}{y}=\frac{3}{x}\\2x+\frac{1}{y}=\frac{3x}{y^2}\end{cases}}}\)(nhân 2 vế của pt 2 với x/y)

\(\Rightarrow\frac{3}{x}=\frac{3x}{y^2}\Rightarrow3x^2=3y^2\Rightarrow x^2=y^2\)

\(\Rightarrow\orbr{\begin{cases}x=y\\x=-y\end{cases}}\)

Thay vào rồi giải nha bạn

a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+1+1}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

=>x+1=1 và y-2=1/2

=>x=0 và y=5/2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2y}=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{9}{18}-\dfrac{1}{18}=\dfrac{8}{18}=\dfrac{4}{9}\\\dfrac{2}{2x-y}=\dfrac{1}{18}+\dfrac{1}{x-2y}\end{matrix}\right.\)

=>x-2y=9 và 2/2x-y=1/18+1/9=1/18+2/18=3/18=1/6

=>x-2y=9 và 2x-y=12

=>x=5; y=-2

c: \(\Leftrightarrow\left\{{}\begin{matrix}10\left|x-6\right|+15\left|y+1\right|=25\\10\left|x-6\right|-8\left|y+1\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23\left|y+1\right|=23\\\left|x-6\right|=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

=>\(\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

a) ( 10x3y - 5x2y2 - 25 x4y3) : ( -5xy)

Ta có : -5xy( -2x2 + xy + 5x3y2) : ( - 5xy)

Vậy , ta được thương là : -2x2 + xy + 5x3y2

b) ( 27x3 - y3) : ( 3x - y)

Ta có : ( 3x - y)( 9x2 + 3xy + y2) : ( 3x - y)

Vậy , ta được thương là : 9x2 + 3xy + y2

C,D chịu

29 tháng 3 2022

hình như cái này là bài hệ pt ông ơi

 

15 tháng 2 2020

Sau khi thay thế y = 1 - x. Ta được:

\(P=3x^2-3x+1=\frac{3}{4}\left(2x-1\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

5 tháng 4 2020

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)