Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(-2x+1\right)\left(x+3\right)+\left(x+1\right)\left(2x-1\right)=14\)
\(\Leftrightarrow-2x^2-6x+x+3+2x^2-x+2x-1=14\)
\(\Leftrightarrow-4x=12\)
hay x=-3
a: \(=\dfrac{2\left(x+2\right)\left(x-1\right)}{x+2}=2x-2\)
b: \(=\dfrac{2x^3+x^2-6x^2-3x+2x+1}{2x+1}=x^2-3x+1\)
c: \(=\dfrac{x^3+2x^2-2x^2-4x+2x+4}{x+2}=x^2-2x+2\)
d: \(=\dfrac{x^2\left(x-3\right)}{x-3}=x^2\)
b) Ta có: \(\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35\)
\(=x^3+2x^2-7x-14-\left(2x^2-28x-x+14\right)+x^3-2x^2-22x+35\)
\(=2x^3-29x+21-2x^2+29x-14\)
\(=2x^3-2x^2+7\)
\(\dfrac{x-14}{x^2-4x}\) - \(\dfrac{3}{2x}\) + \(\dfrac{x+1}{2x-8}\) Đk x #0; x # 4
= \(\dfrac{x-14}{x(x-4)}\) - \(\dfrac{3}{2x}\) + \(\dfrac{x+1}{2(x-4)}\)
= \(\dfrac{2.(x-14)-3.(x-4)+x.(x+1)}{2.x.(x-4)}\)
= \(\dfrac{2x-28-3x+12+x^2+x}{2x(x-4)}\)
= \(\dfrac{x^2-16}{2x(x-4)}\)
= \(\dfrac{(x-4).(x+4)}{2x(x-4)}\)
= \(\dfrac{x+4}{2x}\)
a, \(\frac{x}{2x+6}+\frac{x}{2x-2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\) Đkxđ : \(x\ne-1;x\ne-3\)
⇌ x(x + 1) - x(x - 3) = 2(3x + 2)
⇌ x2 + x - x2 - 3x = 6x + 4
⇌ -8x = 4
⇌ x = \(-\frac{1}{2}\) ( tm đk)
→ S = \(\left\{-\frac{1}{2}\right\}\)
b, \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{2}{3}\) Đkxđ : \(x\ne-7\)
⇌ 30 + 24 = 2(x + 7)
⇌ 2x = 40
⇌ x = 20 (tmđk)
→ S = \(\left\{20\right\}\)
c, \(\frac{x-1}{\frac{x-1}{x+1}}=\frac{2x-1}{x^2+x}\) Đkxđ : \(x\ne-1\)
⇌ x = 2x - 1
⇌ x = 1 (tmđk)
→ S = \(\left\{1\right\}\)
1: \(\Leftrightarrow\left(x-4\right)^2+14=-9\left(x-4\right)\)
\(\Leftrightarrow x^2-8x+16+14+9x-36=0\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3(nhận) hoặc x=2(nhận)
2: \(\Leftrightarrow\left(8x+1\right)\left(2x-1\right)-2x\left(2x+1\right)-12x^2+9=0\)
\(\Leftrightarrow16x^2-8x+2x-1-4x^2-2x-12x^2+9=0\)
=>-8x+8=0
hay x=1(nhận)
c: \(\dfrac{1}{2\left(x-3\right)}-\dfrac{3x-5}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow x-1-2\left(3x-5\right)=\left(x-3\right)\left(x-1\right)\)
\(\Leftrightarrow x^2-4x+3=x-1-6x+10=-5x+9\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3(nhận) hoặc x=2(nhận)
\(\left(x-1\right)^2=\left(2x+14\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2x+14\\x-1=-\left(2x+14\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=-1-14\\x-1=-2x-14\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15\\x+2x=-14+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15\\3x=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15\\x=-\dfrac{13}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-15;-\dfrac{13}{3}\right\}\)
\(\left|2x-1\right|+x=14\)
\(\left|2x-1\right|=2x-1\)khi \(2x-1\ge0\)hay \(x\ge\frac{1}{2}\)
\(\left|2x-1\right|=-\left(2x-1\right)\)khi \(2x-1< 0\)hay \(x< \frac{1}{2}\)
Quy về giải hai phương trình :
\(2x-1+x=14\)( \(x\ge\frac{1}{2}\))
\(\Leftrightarrow3x-1=14\)
\(\Leftrightarrow3x=15\)
\(\Leftrightarrow x=5\)( tmđk )
\(-\left(2x-1\right)+x=14\)( \(x< \frac{1}{2}\))
\(\Leftrightarrow-2x+1+x=14\)
\(\Leftrightarrow-x+1=14\)
\(\Leftrightarrow-x=13\)
\(\Leftrightarrow x=-13\)( tmđk )
Vậy nghiệm của phương trình là S = { 5 ; -13 }
Lắm trò !
\(\left|2x-1\right|+x=14\)
\(\Leftrightarrow\left|2x-1\right|=14-x\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=14-x\\-2x+1=14-x\end{cases}\Leftrightarrow\hept{\begin{cases}3x=15\\-x=13\end{cases}\Leftrightarrow}\hept{\begin{cases}x=5\\x=-13\end{cases}}}\)
Vậy nghiệp pt lần lượt là 5 ; -13