Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x-1}+5.2^{x-1}=\frac{7}{32}\)
=> \(2^{x-1}\left(1+5\right)=\frac{7}{32}\)
=> \(2^{x-1}.6=\frac{7}{32}\)
=> \(2^{x-1}=\frac{7}{32}:6=\frac{7}{192}\)
ĐỀ SAI RỒI BẠN !
2x-1+5.2x-2=2.2x-2+5.2x-2=2x-2.(5+2)=2x-2.7=7/32
=>2x-2=7/32:7=1/32
=>x-2=-5
=>x=-3
a) (2x-1)\(^2\)+\(\left|2y-x\right|\)=0
Vì (2x-1)\(^2\)\(\ge\)0 với mọi x
\(\left|2y-x\right|\)\(\ge\)0 với mọi y
\(\Rightarrow\)\(\left\{\begin{matrix}2x-1=0\\2y-x=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{\begin{matrix}x=\frac{1}{2}\\2y-\frac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)
Vậy .....
b)\(\left|x-\frac{1}{3}\right|\)+\(\frac{4}{5}\)=\(\frac{14}{5}\)
\(\Rightarrow\)\(\left|x-\frac{1}{3}\right|\)=2
\(\Rightarrow\)\(\left[\begin{matrix}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{matrix}\right.\)\(\Rightarrow\)\(\left[\begin{matrix}x=\frac{7}{3}\\x=\frac{-5}{3}\end{matrix}\right.\)
Vậy ....
1.
\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)
\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)
\(=2x^5y^4-4x^2y^3\)
2.
\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)
\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)
\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)
3.
\(5x-7xy^2+3x-\frac{1}{2}xy^2\)
\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)
\(=8x-\frac{15}{2}xy^2\)
4.
\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)
\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)
\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)
5.
\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)
\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)
\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)
6.
\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)
\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)
a,-200 x10 t10z3
b,\(\frac{-5}{4}\)x11 y5 z4
c,\(\frac{2}{15}\)x6 y6 z9
d,\(\frac{1}{7}\)x10 y6 z7
e,-4z6 y10 z6
a)Viết dưới dạng phân số rồi sử dụng tích chéo ý
b)\(\frac{-1}{7}.2^3-2x:1\frac{4}{3}=-2^{x-1}\)
\(\Rightarrow\frac{-8}{7}-2x:\frac{7}{3}=-2^{x-1}\)
\(\Rightarrow\frac{-8}{7}-\frac{6x}{7}=-2^{x-1}\)
\(\Rightarrow\frac{-8-6x}{7}=\frac{2^{x-1}}{-1}\)
\(\Rightarrow-1\left(-8-6x\right)=7.2^{x-1}\)
\(\Rightarrow6x+8=7.2^{x-1}\)
.........
\(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)
\(\Rightarrow2^{x-1}+2^{x-1}.\frac{5}{2}=\frac{7}{32}\Rightarrow2^{x-1}.\left(1+\frac{5}{2}\right)=\frac{7}{32}\Rightarrow2^{x-1}.\frac{7}{2}=\frac{7}{32}\)
\(\Rightarrow2^{x-1}=\frac{7}{32}:\frac{7}{2}=\frac{7}{32}.\frac{2}{7}=\frac{1}{16}\)
\(\Rightarrow2^{x-1}=2^{-4}\Rightarrow x-1=-4\Rightarrow x=-4+1=-3\)